Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Exp Med ; 221(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37930337

ABSTRACT

B cell acute lymphoblastic leukemia (B-ALL) is a multistep disease characterized by the hierarchical acquisition of genetic alterations. However, the question of how a primary oncogene reprograms stem cell-like properties in committed B cells and leads to a preneoplastic population remains unclear. Here, we used the PAX5::ELN oncogenic model to demonstrate a causal link between the differentiation blockade, the self-renewal, and the emergence of preleukemic stem cells (pre-LSCs). We show that PAX5::ELN disrupts the differentiation of preleukemic cells by enforcing the IL7r/JAK-STAT pathway. This disruption is associated with the induction of rare and quiescent pre-LSCs that sustain the leukemia-initiating activity, as assessed using the H2B-GFP model. Integration of transcriptomic and chromatin accessibility data reveals that those quiescent pre-LSCs lose B cell identity and reactivate an immature molecular program, reminiscent of human B-ALL chemo-resistant cells. Finally, our transcriptional regulatory network reveals the transcription factor EGR1 as a strong candidate to control quiescence/resistance of PAX5::ELN pre-LSCs as well as of blasts from human B-ALL.


Subject(s)
Burkitt Lymphoma , Leukemia , Humans , Janus Kinases , STAT Transcription Factors , Signal Transduction , Stem Cells
2.
Blood Cancer J ; 13(1): 106, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37423955

ABSTRACT

The Janus kinase 2 (JAK2)-driven myeloproliferative neoplasms (MPNs) are chronic malignancies associated with high-risk complications and suboptimal responses to JAK inhibitors such as ruxolitinib. A better understanding of cellular changes induced by ruxolitinib is required to develop new combinatory therapies to improve treatment efficacy. Here, we demonstrate that ruxolitinib induced autophagy in JAK2V617F cell lines and primary MPN patient cells through the activation of protein phosphatase 2A (PP2A). Inhibition of autophagy or PP2A activity along with ruxolitinib treatment reduced proliferation and increased the death of JAK2V617F cells. Accordingly, proliferation and clonogenic potential of JAK2V617F-driven primary MPN patient cells, but not of normal hematopoietic cells, were markedly impaired by ruxolitinib treatment with autophagy or PP2A inhibitor. Finally, preventing ruxolitinib-induced autophagy with a novel potent autophagy inhibitor Lys05 improved leukemia burden reduction and significantly prolonged the mice's overall survival compared with ruxolitinib alone. This study demonstrates that PP2A-dependent autophagy mediated by JAK2 activity inhibition contributes to resistance to ruxolitinib. Altogether, our data support that targeting autophagy or its identified regulator PP2A could enhance sensitivity to ruxolitinib of JAK2V617F MPN cells and improve MPN patient care.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Mice , Animals , Janus Kinase 2 , Protein Phosphatase 2/genetics , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Autophagy , Mutation
3.
Cancer Discov ; 13(7): 1720-1747, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37012202

ABSTRACT

Although transcription factor CCAAT-enhancer binding protein α (C/EBPα) is critical for normal and leukemic differentiation, its role in cell and metabolic homeostasis is largely unknown in cancer. Here, multiomics analyses uncovered a coordinated activation of C/EBPα and Fms-like tyrosine kinase 3 (FLT3) that increased lipid anabolism in vivo and in patients with FLT3-mutant acute myeloid leukemia (AML). Mechanistically, C/EBPα regulated the fatty acid synthase (FASN)-stearoyl-CoA desaturase (SCD) axis to promote fatty acid (FA) biosynthesis and desaturation. We further demonstrated that FLT3 or C/EBPα inactivation decreased monounsaturated FA incorporation to membrane phospholipids through SCD downregulation. Consequently, SCD inhibition enhanced susceptibility to lipid redox stress that was exploited by combining FLT3 and glutathione peroxidase 4 inhibition to trigger lipid oxidative stress, enhancing ferroptotic death of FLT3-mutant AML cells. Altogether, our study reveals a C/EBPα function in lipid homeostasis and adaptation to redox stress, and a previously unreported vulnerability of FLT3-mutant AML to ferroptosis with promising therapeutic application. SIGNIFICANCE: FLT3 mutations are found in 30% of AML cases and are actionable by tyrosine kinase inhibitors. Here, we discovered that C/EBPα regulates FA biosynthesis and protection from lipid redox stress downstream mutant-FLT3 signaling, which confers a vulnerability to ferroptosis upon FLT3 inhibition with therapeutic potential in AML. This article is highlighted in the In This Issue feature, p. 1501.


Subject(s)
Ferroptosis , Leukemia, Myeloid, Acute , Humans , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , Fatty Acids , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mutation , Oxidative Stress , Protein Kinase Inhibitors/therapeutic use , Cell Line, Tumor
4.
Clin Cancer Res ; 29(1): 134-142, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36318706

ABSTRACT

PURPOSE: Acute myeloid leukemias (AML) are clonal diseases that develop from leukemic stem cells (LSC) that carry an independent prognostic impact on the initial response to induction chemotherapy, demonstrating the clinical relevance of LSC abundance in AML. In 2018, the European LeukemiaNet published recommendations for the detection of measurable residual disease (Bulk MRD) and suggested the exploration of LSC MRD and the use of multiparametric displays. EXPERIMENTAL DESIGN: We evaluated the performance of unsupervised clustering for the post-induction assessment of bulk and LSC MRD in 155 patients with AML who received intensive conventional chemotherapy treatment. RESULTS: The median overall survival (OS) for Bulk+ MRD patients was 16.7 months and was not reached for negative patients (HR, 3.82; P < 0.0001). The median OS of LSC+ MRD patients was 25.0 months and not reached for negative patients (HR, 2.84; P = 0.001). Interestingly, 1-year (y) and 3-y OS were 60% and 39% in Bulk+, 91% and 52% in Bulk-LSC+ and 92% and 88% in Bulk-LSC-. CONCLUSIONS: In this study, we confirm the prognostic impact of post-induction multiparametric flow cytometry Bulk MRD in patients with AML. Focusing on LSCs, we identified a group of patients with negative Bulk MRD but positive LSC MRD (25.8% of our cohort) with an intermediate prognosis, demonstrating the interest of MRD analysis focusing on leukemic chemoresistant subpopulations.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Prognosis , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Induction Chemotherapy , Neoplasm, Residual , Stem Cells
5.
Blood Cancer J ; 12(8): 117, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35973983

ABSTRACT

Classifications of acute myeloid leukemia (AML) patients rely on morphologic, cytogenetic, and molecular features. Here we have established a novel flow cytometry-based immunophenotypic stratification showing that AML blasts are blocked at specific stages of differentiation where features of normal myelopoiesis are preserved. Six stages of leukemia differentiation-arrest categories based on CD34, CD117, CD13, CD33, MPO, and HLA-DR expression were identified in two independent cohorts of 2087 and 1209 AML patients. Hematopoietic stem cell/multipotent progenitor-like AMLs display low proliferation rate, inv(3) or RUNX1 mutations, and high leukemic stem cell frequency as well as poor outcome, whereas granulocyte-monocyte progenitor-like AMLs have CEBPA mutations, RUNX1-RUNX1T1 or CBFB-MYH11 translocations, lower leukemic stem cell frequency, higher chemosensitivity, and better outcome. NPM1 mutations correlate with most mature stages of leukemia arrest together with TET2 or IDH mutations in granulocyte progenitors-like AML or with DNMT3A mutations in monocyte progenitors-like AML. Overall, we demonstrate that AML is arrested at specific stages of myeloid differentiation (SLA classification) that significantly correlate with AML genetic lesions, clinical presentation, stem cell properties, chemosensitivity, response to therapy, and outcome.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Leukemia, Myeloid, Acute , Core Binding Factor Alpha 2 Subunit/genetics , HLA-DR Antigens/genetics , Humans , Immunophenotyping , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mutation
6.
Platelets ; 33(8): 1153-1158, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-35348426

ABSTRACT

Impaired platelet production is a mechanism of immune thrombocytopenia (ITP). Morphological abnormalities of megakaryocytes (MKs) are sometimes observed in this disease. Two studies have suggested an association between MK abnormalities and response to corticosteroids in primary ITP, but none have investigated this association for thrombopoietin-receptor agonists (TPO-RAs). This was the aim of this study. The source of population was the French CARMEN registry with prospective follow-up of adult patients with incident ITP. We included patients with primary ITP, treated by TPO-RA and with a bone marrow smear before initiating TPO-RA. MK abnormalities were categorized by the presence of dysplasia and by the stage of maturation. Among 451 patients screened, 38 were included in the analysis. There was no difference in the median percentage of dysplastic MKs between responders to TPO-RA (4.0%, 95% confidence interval - CI: 2.3-6.4) and non-responders (4.5%, 95% CI: 0.7-7.1). There was a slightly higher proportion of granular MKs (4.5%, 95% CI: 3-6) and basophilic MKs (30.1%, 95% CI: 21.9-39.1) in non-responders compared to responders (granular: 2.0%, 95% CI: 0-4.1; basophilic: 21.3%, 95% CI: 11.4-40.7). In conclusion, MK abnormalities were not associated with response achievement in ITP patients treated with TPO-RA in this series of 38 patients.


Subject(s)
Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Adult , Bone Marrow , Humans , Megakaryocytes/physiology , Prospective Studies , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Receptors, Thrombopoietin/agonists , Thrombocytopenia/drug therapy , Thrombopoietin/pharmacology , Thrombopoietin/therapeutic use
8.
Blood Adv ; 6(2): 386-398, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34638130

ABSTRACT

Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis leading to peripheral cytopenias and in a substantial proportion of cases to acute myeloid leukemia. The deletion of the long arm of chromosome 11, del(11q), is a rare but recurrent clonal event in MDS. Here, we detail the largest series of 113 cases of MDS and myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN) harboring a del(11q) analyzed at clinical, cytological, cytogenetic, and molecular levels. Female predominance, a survival prognosis similar to other MDS, a low monocyte count, and dysmegakaryopoiesis were the specific clinical and cytological features of del(11q) MDS. In most cases, del(11q) was isolated, primary and interstitial encompassing the 11q22-23 region containing ATM, KMT2A, and CBL genes. The common deleted region at 11q23.2 is centered on an intergenic region between CADM1 (also known as Tumor Suppressor in Lung Cancer 1) and NXPE2. CADM1 was expressed in all myeloid cells analyzed in contrast to NXPE2. At the functional level, the deletion of Cadm1 in murine Lineage-Sca1+Kit+ cells modifies the lymphoid-to-myeloid ratio in bone marrow, although not altering their multilineage hematopoietic reconstitution potential after syngenic transplantation. Together with the frequent simultaneous deletions of KMT2A, ATM, and CBL and mutations of ASXL1, SF3B1, and CBL, we show that CADM1 may be important in the physiopathology of the del(11q) MDS, extending its role as tumor-suppressor gene from solid tumors to hematopoietic malignancies.


Subject(s)
Cell Adhesion Molecule-1/metabolism , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Animals , Cell Adhesion Molecule-1/genetics , Chromosome Deletion , Chromosomes, Human, Pair 11 , Female , Genes, Tumor Suppressor , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology
9.
Cancers (Basel) ; 13(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34680392

ABSTRACT

Relapses and resistance to therapeutic agents are major barriers in the treatment of acute myeloid leukemia (AML) patients. These unfavorable outcomes emphasize the need for new strategies targeting drug-resistant cells. As IDH mutations are present in the preleukemic stem cells and systematically conserved at relapse, targeting IDH mutant cells could be essential to achieve a long-term remission in the IDH mutant AML subgroup. Here, using a panel of human AML cell lines and primary AML patient specimens harboring IDH mutations, we showed that the production of an oncometabolite (R)-2-HG by IDH mutant enzymes induces vitamin D receptor-related transcriptional changes, priming these AML cells to differentiate with pharmacological doses of ATRA and/or VD. This activation occurs in a CEBPα-dependent manner. Accordingly, our findings illuminate potent and cooperative effects of IDH mutations and the vitamin D receptor pathway on differentiation in AML, revealing a novel therapeutic approach easily transferable/immediately applicable to this subgroup of AML patients.

10.
Biology (Basel) ; 10(6)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207482

ABSTRACT

Autophagy, which literally means "eat yourself", is more than just a lysosomal degradation pathway. It is a well-known regulator of cellular metabolism and a mechanism implicated in tumor initiation/progression and therapeutic resistance in many cancers. However, whether autophagy acts as a tumor suppressor or promoter is still a matter of debate. In acute myeloid leukemia (AML), it is now proven that autophagy supports cell proliferation in vitro and leukemic progression in vivo. Mitophagy, the specific degradation of mitochondria through autophagy, was recently shown to be required for leukemic stem cell functions and survival, highlighting the prominent role of this selective autophagy in leukemia initiation and progression. Moreover, autophagy in AML sustains fatty acid oxidation through lipophagy to support mitochondrial oxidative phosphorylation (OxPHOS), a hallmark of chemotherapy-resistant cells. Nevertheless, in the context of therapy, in AML, as well as in other cancers, autophagy could be either cytoprotective or cytotoxic, depending on the drugs used. This review summarizes the recent findings that mechanistically show how autophagy favors leukemic transformation of normal hematopoietic stem cells, as well as AML progression and also recapitulates its ambivalent role in resistance to chemotherapies and targeted therapies.

11.
Blood Adv ; 5(5): 1442-1451, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33666653

ABSTRACT

We aimed to study the prognostic impact of the mutational landscape in primary and secondary myelofibrosis. The study included 479 patients with myelofibrosis recruited from 24 French Intergroup of Myeloproliferative Neoplasms (FIM) centers. The molecular landscape was studied by high-throughput sequencing of 77 genes. A Bayesian network allowed the identification of genomic groups whose prognostic impact was studied in a multistate model considering transitions from the 3 conditions: myelofibrosis, acute leukemia, and death. Results were validated using an independent, previously published cohort (n = 276). Four genomic groups were identified: patients with TP53 mutation; patients with ≥1 mutation in EZH2, CBL, U2AF1, SRSF2, IDH1, IDH2, NRAS, or KRAS (high-risk group); patients with ASXL1-only mutation (ie, no associated mutation in TP53 or high-risk genes); and other patients. A multistate model found that both TP53 and high-risk groups were associated with leukemic transformation (hazard ratios [HRs] [95% confidence interval], 8.68 [3.32-22.73] and 3.24 [1.58-6.64], respectively) and death from myelofibrosis (HRs, 3.03 [1.66-5.56] and 1.77 [1.18-2.67], respectively). ASXL1-only mutations had no prognostic value that was confirmed in the validation cohort. However, ASXL1 mutations conferred a worse prognosis when associated with a mutation in TP53 or high-risk genes. This study provides a new definition of adverse mutations in myelofibrosis with the addition of TP53, CBL, NRAS, KRAS, and U2AF1 to previously described genes. Furthermore, our results argue that ASXL1 mutations alone cannot be considered detrimental.


Subject(s)
Primary Myelofibrosis , Bayes Theorem , Genomics , Humans , Mutation , Primary Myelofibrosis/diagnosis , Primary Myelofibrosis/genetics , Prognosis , Repressor Proteins/genetics
14.
Leukemia ; 35(2): 417-432, 2021 02.
Article in English | MEDLINE | ID: mdl-32447346

ABSTRACT

Resistance of acute myeloid leukemia (AML) to therapeutic agents is frequent. Consequently, the mechanisms leading to this resistance must be understood and addressed. In this paper, we demonstrate that inhibition of deubiquitinylase USP7 significantly reduces cell proliferation in vitro and in vivo, blocks DNA replication progression and increases cell death in AML. Transcriptomic dataset analyses reveal that a USP7 gene signature is highly enriched in cells from AML patients at relapse, as well as in residual blasts from patient-derived xenograft (PDX) models treated with clinically relevant doses of cytarabine, which indicates a relationship between USP7 expression and resistance to therapy. Accordingly, single-cell analysis of AML patient samples at relapse versus at diagnosis showed that a gene signature of the pre-existing subpopulation responsible for relapse is enriched in transcriptomes of patients with a high USP7 level. Furthermore, we found that USP7 interacts and modulates CHK1 protein levels and functions in AML. Finally, we demonstrated that USP7 inhibition acts in synergy with cytarabine to kill AML cell lines and primary cells of patients with high USP7 levels. Altogether, these data demonstrate that USP7 is both a marker of resistance to chemotherapy and a potential therapeutic target in overcoming resistance to treatment.


Subject(s)
Biomarkers, Tumor/metabolism , Cytarabine/pharmacology , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic/drug effects , Leukemia, Myeloid, Acute/drug therapy , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Animals , Antimetabolites, Antineoplastic/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Female , Gene Expression Profiling , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Prognosis , RNA, Small Interfering/genetics , Signal Transduction , Survival Rate , Tumor Cells, Cultured , Ubiquitin-Specific Peptidase 7/genetics , Xenograft Model Antitumor Assays
15.
Nat Commun ; 11(1): 4056, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32792483

ABSTRACT

Autophagy has been associated with oncogenesis with one of its emerging key functions being its contribution to the metabolism of tumors. Therefore, deciphering the mechanisms of how autophagy supports tumor cell metabolism is essential. Here, we demonstrate that the inhibition of autophagy induces an accumulation of lipid droplets (LD) due to a decrease in fatty acid ß-oxidation, that leads to a reduction of oxidative phosphorylation (OxPHOS) in acute myeloid leukemia (AML), but not in normal cells. Thus, the autophagic process participates in lipid catabolism that supports OxPHOS in AML cells. Interestingly, the inhibition of OxPHOS leads to LD accumulation with the concomitant inhibition of autophagy. Mechanistically, we show that the disruption of mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) phenocopies OxPHOS inhibition. Altogether, our data establish that mitochondria, through the regulation of MERCs, controls autophagy that, in turn finely tunes lipid degradation to fuel OxPHOS supporting proliferation and growth in leukemia.


Subject(s)
Autophagy/physiology , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia/metabolism , Mitochondria/metabolism , Animals , Autophagy/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Proliferation/physiology , Flow Cytometry , Humans , Leukemia/genetics , Leukemia, Myeloid, Acute/pathology , Lipid Metabolism/genetics , Lipid Metabolism/physiology , Lipogenesis/genetics , Lipogenesis/physiology , Mice , Mitochondria/genetics , Oxidation-Reduction , Oxidative Phosphorylation
16.
Sci Rep ; 10(1): 1906, 2020 02 05.
Article in English | MEDLINE | ID: mdl-32024878

ABSTRACT

We recently identified the CDC25A phosphatase as a key actor in proliferation and differentiation in acute myeloid leukemia expressing the FLT3-ITD mutation. In this paper we demonstrate that CDC25A level is controlled by a complex STAT5/miR-16 transcription and translation pathway working downstream of this receptor. First, we established by CHIP analysis that STAT5 is directly involved in FLT3-ITD-dependent CDC25A gene transcription. In addition, we determined that miR-16 expression is repressed by FLT3-ITD activity, and that STAT5 participates in this repression. In accordance with these results, miR-16 expression was significantly reduced in a panel of AML primary samples carrying the FLT3-ITD mutation when compared with FLT3wt cells. The expression of a miR-16 mimic reduced CDC25A protein and mRNA levels, and RNA interference-mediated down modulation of miR-16 restored CDC25A expression in response to FLT3-ITD inhibition. Finally, decreasing miR-16 expression partially restored the proliferation of cells treated with the FLT3 inhibitor AC220, while the expression of miR-16 mimic stopped this proliferation and induced monocytic differentiation of AML cells. In summary, we identified a FLT3-ITD/STAT5/miR-16/CDC25A axis essential for AML cell proliferation and differentiation.


Subject(s)
Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , MicroRNAs/metabolism , STAT5 Transcription Factor/metabolism , Tumor Suppressor Proteins/metabolism , cdc25 Phosphatases/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Female , Humans , Leukemia, Myeloid, Acute/pathology , Male , Mutation , STAT5 Transcription Factor/genetics , Signal Transduction , Tumor Suppressor Proteins/genetics , fms-Like Tyrosine Kinase 3/genetics
19.
Oncotarget ; 6(35): 38061-78, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26515730

ABSTRACT

We investigated cell cycle regulation in acute myeloid leukemia cells expressing the FLT3-ITD mutated tyrosine kinase receptor, an underexplored field in this disease. Upon FLT3 inhibition, CDC25A mRNA and protein were rapidly down-regulated, while levels of other cell cycle proteins remained unchanged. This regulation was dependent on STAT5, arguing for FLT3-ITD-dependent transcriptional regulation of CDC25A. CDC25 inhibitors triggered proliferation arrest and cell death of FLT3-ITD as well as FLT3-ITD/TKD AC-220 resistant cells, but not of FLT3-wt cells. Consistently, RNA interference-mediated knock-down of CDC25A reduced the proliferation of FLT3-ITD cell lines. Finally, the clonogenic capacity of primary FLT3-ITD AML cells was reduced by the CDC25 inhibitor IRC-083864, while FLT3-wt AML and normal CD34+ myeloid cells were unaffected. In good agreement, in a cohort of 100 samples from AML patients with intermediate-risk cytogenetics, high levels of CDC25A mRNA were predictive of higher clonogenic potential in FLT3-ITD+ samples, not in FLT3-wt ones.Importantly, pharmacological inhibition as well as RNA interference-mediated knock-down of CDC25A also induced monocytic differentiation of FLT3-ITD positive cells, as judged by cell surface markers expression, morphological modifications, and C/EBPα phosphorylation. CDC25 inhibition also re-induced monocytic differentiation in primary AML blasts carrying the FLT3-ITD mutation, but not in blasts expressing wild type FLT3. Altogether, these data identify CDC25A as an early cell cycle transducer of FLT3-ITD oncogenic signaling, and as a promising target to inhibit proliferation and re-induce differentiation of FLT3-ITD AML cells.


Subject(s)
Cell Differentiation , Cell Proliferation , Leukemia, Myeloid, Acute/enzymology , cdc25 Phosphatases/metabolism , fms-Like Tyrosine Kinase 3/metabolism , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/pharmacology , Benzothiazoles/pharmacology , Benzoxazoles/pharmacology , Cell Cycle Checkpoints , Cell Death , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Child , Coculture Techniques , Enzyme Inhibitors/pharmacology , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , HL-60 Cells , Humans , K562 Cells , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Mutation , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction , Tandem Repeat Sequences , Time Factors , Transcription, Genetic , Transfection , Tumor Cells, Cultured , cdc25 Phosphatases/antagonists & inhibitors , cdc25 Phosphatases/genetics , fms-Like Tyrosine Kinase 3/genetics
20.
Mol Cancer Ther ; 14(10): 2364-73, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26206337

ABSTRACT

We assessed the antileukemic activity of 2-deoxy-d-glucose (2-DG) through the modulation of expression of receptor tyrosine kinases (RTK) commonly mutated in acute myeloid leukemia (AML). We used human leukemic cell lines cells, both in vitro and in vivo, as well as leukemic samples from AML patients to demonstrate the role of 2-DG in tumor cell growth inhibition. 2-DG, through N-linked glycosylation inhibition, affected the cell-surface expression and cellular signaling of both FTL3-ITD and mutated c-KIT and induced apoptotic cell death. Leukemic cells harboring these mutated RTKs (MV4-11, MOLM-14, Kasumi-1, and TF-1 c-KIT D816V) were the most sensitive to 2-DG treatment in vitro as compared with nonmutated cells. 2-DG activity was also demonstrated in leukemic cells harboring FLT3-TKD mutations resistant to the tyrosine kinase inhibitor (TKI) quizartinib. Moreover, the antileukemic activity of 2-DG was particularly marked in c-KIT-mutated cell lines and cell samples from core binding factor-AML patients. In these cells, 2-DG inhibited the cell-surface expression of c-KIT, abrogated STAT3 and MAPK-ERK pathways, and strongly downregulated the expression of the receptor resulting in a strong in vivo effect in NOD/SCID mice xenografted with Kasumi-1 cells. Finally, we showed that 2-DG decreases Mcl-1 protein expression in AML cells and induces sensitization to both the BH3 mimetic inhibitor of Bcl-xL, Bcl-2 and Bcl-w, ABT-737, and cytarabine. In conclusion, 2-DG displays a significant antileukemic activity in AML with FLT3-ITD or KIT mutations, opening a new therapeutic window in a subset of AML with mutated RTKs.


Subject(s)
Antineoplastic Agents/pharmacology , Deoxyglucose/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Protein Processing, Post-Translational/drug effects , Proto-Oncogene Proteins c-kit/genetics , fms-Like Tyrosine Kinase 3/genetics , Animals , Apoptosis , Benzothiazoles/pharmacology , Biphenyl Compounds/pharmacology , Cell Line, Tumor , Cell Proliferation , Cell Survival , Cytarabine/pharmacology , Drug Resistance, Neoplasm , Glycolysis , Glycosylation , Humans , Leukemia, Myeloid, Acute/genetics , Mice, Inbred NOD , Mice, SCID , Mutation , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Nitrophenols/pharmacology , Phenylurea Compounds/pharmacology , Piperazines/pharmacology , Signal Transduction , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL