Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Small ; 18(38): e2203070, 2022 09.
Article in English | MEDLINE | ID: mdl-35986441

ABSTRACT

Nanoparticles are well established vectors for the delivery of a wide range of biomedically relevant cargoes. Numerous studies have investigated the impact of size, shape, charge, and surface functionality of nanoparticles on mammalian cellular uptake. Rigidity has been studied to a far lesser extent, and its effects are still unclear. Here, the importance of this property, and its interplay with particle size, is systematically explored using a library of core-shell spherical PEGylated nanoparticles synthesized by RAFT emulsion polymerization. Rigidity of these particles is controlled by altering the intrinsic glass transition temperature of their constituting polymers. Three polymeric core rigidities are tested: hard, medium, and soft using two particle sizes, 50 and 100 nm diameters. Cellular uptake studies indicate that softer particles are taken up faster and threefold more than harder nanoparticles with the larger 100 nm particles. In addition, the study indicates major differences in the cellular uptake pathway, with harder particles being internalized through clathrin- and caveolae-mediated endocytosis as well as macropinocytosis, while softer particles are taken up bycaveolae- and non-receptormediated endocytosis. However, 50 nm derivatives do not show any appreciable differences in uptake efficiency, suggesting that rigidity as a parameter in the biological regime may be size dependent.


Subject(s)
Clathrin , Nanoparticles , Animals , Clathrin/metabolism , Emulsions , Endocytosis , Mammals/metabolism , Nanoparticles/metabolism , Particle Size , Polyethylene Glycols , Polymers/pharmacology
2.
Biomacromolecules ; 23(6): 2315-2328, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35582852

ABSTRACT

Rod-shaped nanoparticles have been identified as promising drug delivery candidates. In this report, the in vitro cell uptake and in vivo pharmacokinetic/bio-distribution behavior of molecular bottle-brush (BB) and cyclic peptide self-assembled nanotubes were studied in the size range of 36-41 nm in length. It was found that BB possessed the longest plasma circulation time (t1\2 > 35 h), with the cyclic peptide system displaying an intermediate half-life (14.6 h), although still substantially elevated over a non-assembling linear control (2.7 h). The covalently bound BB underwent substantial distribution into the liver, whereas the cyclic peptide nanotube was able to mostly circumvent organ accumulation, highlighting the advantage of the inherent degradability of the cyclic peptide systems through their reversible aggregation of hydrogen bonding core units.


Subject(s)
Nanoparticles , Nanotubes, Peptide , Nanotubes , Nanoparticles/chemistry , Nanotubes/chemistry , Nanotubes, Peptide/chemistry , Peptides, Cyclic/chemistry , Polymers/chemistry
3.
J Colloid Interface Sci ; 590: 249-259, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33548608

ABSTRACT

Temperature-responsive nanomaterials have gained increasing interest over the past decade due their ability to undergo conformational changes in situ, in response to a change in temperature. One class of temperature-responsive polymers are those with lower critical solution temperature, which phase separate in aqueous solution above a critical temperature. When these temperature-responsive polymers are grafted to a solid nanoparticle, a change in their surface properties occurs above this critical temperature, from hydrophilic to more hydrophobic, giving them a propensity to aggregate. This study explores the temperature induced aggregation of silica nanoparticles functionalised with two isomeric temperature-responsive polymers with lower critical solution temperature (LCST) behavior, namely poly(N-isopropyl acrylamide) (PNIPAM), and poly(2-n-propyl-2-oxazoline) (PNPOZ) with similar molecular weights (5000 Da) and grafting density. These nanoparticles exhibited striking differences in the temperature of aggregation, which is consistent with LCST of each polymer. Using a combination of small-angle neutron scattering (SANS) and dynamic light scattering (DLS), we probed subtle differences in the aggregation mechanism for PNIPAM- and PNPOZ-decorated silica nanoparticles. The nanoparticles decorated with PNIPAM and PNPOZ show similar aggregation mechanism that was independent of polymer structure, whereby aggregation starts by the formation of small aggregates. A further increase in temperature leads to interaction between these aggregates and results in full-scale aggregation and subsequent phase separation.

4.
Biomacromolecules ; 22(2): 710-722, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33350825

ABSTRACT

Particle shape has been described as a key factor in improving cell internalization and biodistribution among the different properties investigated for drug-delivery systems. In particular, tubular structures have been identified as promising candidates for improving drug delivery. Here, we investigate the influence of different design elements of cyclic peptide-polymer nanotubes (CPNTs) on cellular uptake including the nature and length of the polymer and the cyclic peptide building block. By varying the composition of these cyclic peptide-polymer conjugates, a library of CPNTs of lengths varying from a few to over a 150 nm were synthesized and characterized using scattering techniques (small-angle neutron scattering and static light scattering). In vitro studies with fluorescently labeled CPNTs have shown that nanotubes comprised of a single polymer arm with a size between 8 and 16 nm were the most efficiently taken up by three different mammalian cell lines. A mechanistic study on multicellular tumor spheroids has confirmed the ability of these compounds to penetrate to their core. Variations in the proportion of paracellular and transcellular uptake with the self-assembling potential of the CPNT were also observed, giving key insights about the behavior of CPNTs in cellular systems.


Subject(s)
Nanotubes, Peptide , Nanotubes , Animals , Peptides, Cyclic , Polymers , Tissue Distribution
5.
Angew Chem Int Ed Engl ; 59(23): 8860-8863, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32045099

ABSTRACT

Typically, the morphologies of the self-assembled nanostructures from block copolymers are limited to spherical micelles, wormlike micelles and vesicles. Now, a new generation of materials with unique shape and structures, cylindrical soft matter particles (tubisomes), are obtained from the hierarchical self-assembly of cyclic peptide-bridged amphiphilic diblock copolymers. The capacity of obtained photo-responsive tubisomes as potential drug carriers is evaluated. The supramolecular tubisomes pave an alternative way for fabricating polymeric tubular structures, and will expand the toolbox for the rational design of functional hierarchical nanostructures.

6.
Nat Commun ; 10(1): 4708, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31624265

ABSTRACT

Self-assembling peptides have the ability to spontaneously aggregate into large ordered structures. The reversibility of the peptide hydrogen bonded supramolecular assembly make them tunable to a host of different applications, although it leaves them highly dynamic and prone to disassembly at the low concentration needed for biological applications. Here we demonstrate that a secondary hydrophobic interaction, near the peptide core, can stabilise the highly dynamic peptide bonds, without losing the vital solubility of the systems in aqueous conditions. This hierarchical self-assembly process can be used to stabilise a range of different ß-sheet hydrogen bonded architectures.


Subject(s)
Macromolecular Substances/chemistry , Nanotubes, Peptide/chemistry , Peptides/chemistry , Protein Conformation, beta-Strand , Water/chemistry , Cell Survival , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , PC-3 Cells , Solubility , Thermodynamics
7.
Eur J Pharm Biopharm ; 139: 76-84, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30818012

ABSTRACT

Designing nanomaterials to release their drug pay-load upon exposure to an exogenous trigger can help to direct drug delivery, but how the triggered release, which often modifies the nanomaterial properties, influences the biological fate of these systems is currently unknown. The aim of this study was to investigate how the triggered drug release from PEG coated, soft, 50 nm distensible lipid nanocapsules (LNC) influenced their diffusion across a mucus barrier. The translocation speed of the non-triggered LNC across a 35 µm thick purified gastric mucin (PGM) barrier was 3 times faster (30.08 ±â€¯2.49 × 10-10 cm2 s-1) compared to equivalent-sized negatively charged polystyrene particles (9.87 ±â€¯0.61 × 10-10 cm2 s-1, p < 0.05). In cystic fibrosis mucus (CFM), harvested from patient primary cells, the non-triggered LNC translocation speed was similar to the PGM, but the polystyrene particle diffusion was so slow it could not be measured. The trigger induced LNC distension process had no effect on the particle diffusion rate in both PGM and CFM (p > 0.05) in a static mucus barrier, but when shear was applied to the barrier the distended LNCs diffused more slowly (3.97 ±â€¯1.38 × 10-8 cm2 s-1, p < 0.05) compared to the non-distended materials (4.94 ±â€¯0.04 × 10-8 cm2 s-1). This data suggested the rapid mucus penetration of the distended LNCs, despite their increased size, was a consequence of their capacity to take a less tortuous path through the barrier, i.e., they experienced less steric hinderance, compared to the non-distended LNC.


Subject(s)
Drug Liberation , Lipids/chemistry , Mucus/metabolism , Nanocapsules/chemistry , Animals , Cystic Fibrosis/pathology , Diffusion , Gastric Mucosa/metabolism , Humans , Mucins/metabolism , Particle Size , Primary Cell Culture , Respiratory Mucosa/metabolism , Surface Properties , Swine
8.
Biomacromolecules ; 20(1): 285-293, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30543415

ABSTRACT

Fibroblast growth factors (FGF) are involved in a wide range of biological processes such as cell proliferation and differentiation. In living organisms, the binding of FGF to its receptors are mediated through electrostatic interactions between FGF and naturally occurring heparin. Despite its prevalent use in medicine, heparin carries notable limitations; namely, its extraction from natural sources (expensive, low yield and extensive purification), viral contamination, and batch-to-batch heterogeneity. In this work a range of synthetic homopolymers and copolymers of sodium 2-acrylamido-2-methylpropanesulfonate were evaluated as potential FGF stabilizers. This was studied by measuring the proliferation of BaF3-FR1c cells, as a model assay, and the results will be compared with the natural stabilization and activation of FGF by heparin. This study explores the structure-activity relationship of these polysulfonated polymers with a focus on the effect of molecular weight, comonomer type, charge dispersion, and polymer architecture on protein stabilization.


Subject(s)
Acrylamides/chemistry , Alkanesulfonates/chemistry , Biomimetic Materials/chemistry , Fibroblast Growth Factors/chemistry , Heparin/chemistry , 3T3 Cells , Acrylamides/pharmacology , Alkanesulfonates/pharmacology , Animals , Biomimetic Materials/pharmacology , Cell Proliferation/drug effects , Fibroblast Growth Factors/metabolism , Heparin/pharmacology , Mice , Protein Binding , Sulfur/chemistry
9.
Chemistry ; 24(71): 19066-19074, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30338575

ABSTRACT

Breaking away from the linear structure of previously reported peptide-based gelators, this study reports the first example of gel formation based on the use of cyclic peptides made of alternating d- and l-amino acids, known to self-assemble in solution to form long nanotubes. Herein, a library of cyclic peptides was systemically studied for their gelation properties in various solvents, uncovering key parameters driving both organogel and hydrogel formation. The hierarchical nature of the self-assembly process in water was characterised by a combination of electron microscopy imaging and small-angle X-ray scattering, revealing a porous network of entangled nanofibres composed by the aggregation of several cyclic peptide nanotubes. Rheology measurements then confirmed the formation of soft hydrogels.


Subject(s)
Hydrogels/chemistry , Nanotubes/chemistry , Peptides, Cyclic/chemistry , Nanotubes/ultrastructure , Peptide Library , Rheology , Scattering, Small Angle , Solvents , Water/chemistry , X-Ray Diffraction
10.
Langmuir ; 34(36): 10591-10602, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30095271

ABSTRACT

Polypseudorotaxanes are polymer chains threaded by molecular rings that are free to unthread; these "pearl-necklace" can self-assemble further, leading to higher-order supramolecular structures with interesting functionalities. In this work, the complexation between α-cyclodextrin (α-CD), a cyclic oligosaccharide of glucopyranose units, and poly(ethylene glycol) (PEG) grafted to silica nanoparticles was studied. The threading of α-CD onto the polymeric chains leads to their aggregation into bundles, followed by either the precipitation of the inclusion complex or the formation of a gel phase, in which silica nanoparticles are incorporated. The kinetics of threading, followed by turbidimetry, revealed a dependence of the rate of complexation on the following parameters: the concentration of α-CD, temperature, PEG length (750, 4000, and 5000 g mol-1), whether the polymer is grafted or free in solution, and the density of grafting. Complexation is slower, and temperature has a higher impact on PEG grafted on silica nanoparticles compared to PEG free in solution. Thermodynamic parameters extracted from the transition-state theory showed that inclusion complex formation is favored with grafted PEG compared to free PEG and establishes a ratio of complexation of five to six ethylene oxide units per cyclodextrin. The complexation yields, determined by gravimetry, revealed that much higher yields are obtained with longer chains and higher grafting density. Thermogravimetric analysis and Fourier transform infrared spectroscopy on the inclusion complex corroborate the number of macrocycles threaded on the chains. A sol-gel transition was observed with the longer PEG chain (5k) at specific mixing ratios; oscillatory shear rheology measurements confirmed a highly solid-like behavior, with an elastic modulus G' of up to 25 kPa, higher than that in the absence of silica. These results thus provide the key parameters dictating inclusion complex formation between cyclodextrin and PEG covalently attached to colloidal silica and demonstrate a facile route toward soft nanoparticle gels based on host-guest interactions.

11.
Soft Matter ; 14(30): 6320-6326, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30019044

ABSTRACT

Self-assembling cyclic peptides (CP) consisting of amino acids with alternating d- and l-chirality form nanotubes by hydrogen bonding, hydrophobic interactions, and π-π stacking in solution. These highly dynamic materials are emerging as promising supramolecular systems for a wide range of biomedical applications. Herein, we discuss how varying the polymer conformation (linear vs. brush), as well as the number of polymer arms per peptide unimer affects the self-assembly of PEGylated cyclic peptides in different solvents, using small angle neutron scattering. Using the derived information, strong correlations were drawn between the size of the aggregates, solvent polarity, and its ability to compete for hydrogen bonding interactions between the peptide unimers. Using these data, it could be possible to engineer cyclic peptide nanotubes of a controlled length.

12.
RSC Adv ; 8(12): 6471-6478, 2018 Feb 06.
Article in English | MEDLINE | ID: mdl-35540425

ABSTRACT

Functionalising nanoparticles with polymers has gained much interest in recent years, as it aids colloidal stability and manipulation of surface properties. Here, polymer-coated thiolated silica nanoparticles were synthesised by self-condensation of 3-mercaptopropyltrimethoxysilane in the presence of hydroxyethylcellulose. These nanoparticles were characterised by dynamic light scattering, small angle neutron scattering, Nanoparticle Tracking Analysis, Raman spectroscopy, FT-IR spectroscopy, thermogravimetric analysis, Ellman's assay, transmission electron microscopy and cryo-transmission electron microscopy. It was found that increasing the amount of hydroxyethylcellulose in the reaction mixture increased the nanoparticle size and reduced the number of thiol groups on their surface. Additionally, by utilising small angle neutron scattering and dynamic light scattering, it was demonstrated that higher concentrations of polymer in the reaction mixture (0.5-2% w/v) resulted in the formation of aggregates, whereby several silica nanoparticles are bridged together with macromolecules of hydroxyethylcellulose. A correlation was identified between the aggregate size and number of particles per aggregate based on size discrepancies observed between DLS and SANS measurements. This information makes it possible to control the size of aggregates during a simple one-pot synthesis; a prospect highly desirable in the design of potential drug delivery systems.

13.
Biomater Sci ; 4(9): 1318-27, 2016 Aug 16.
Article in English | MEDLINE | ID: mdl-27400181

ABSTRACT

Functionalised nanomaterials are gaining popularity for use as drug delivery vehicles and, in particular, mucus penetrating nanoparticles may improve drug bioavailability via the oral route. To date, few polymers have been investigated for their muco-penetration, and the effects of systematic structural changes to polymer architectures on the penetration and diffusion of functionalised nanomaterials through mucosal tissue have not been reported. We investigated the influence of poly(2-oxazoline) alkyl side chain length on nanoparticle diffusion; poly(2-methyl-2-oxazoline), poly(2-ethyl-2-oxazoline), and poly(2-n-propyl-2-oxazoline) were grafted onto the surface of thiolated silica nanoparticles and characterised by FT-IR, Raman and NMR spectroscopy, thermogravimetric analysis, and small angle neutron scattering. Diffusion coefficients were determined in water and in a mucin dispersion (using Nanoparticle Tracking Analysis), and penetration through a mucosal barrier was assessed using an ex vivo fluorescence technique. The addition of a single methylene group in the side chain significantly altered the penetration and diffusion of the materials in both mucin dispersions and mucosal tissue. Nanoparticles functionalised with poly(2-methyl-2-oxazoline) were significantly more diffusive than particles with poly(2-ethyl-2-oxazoline) while particles with poly(2-n-propyl-2-oxazoline) showed no significant increase compared to the unfunctionalised particles. These data show that variations in the polymer structure can radically alter their diffusive properties with clear implications for the future design of mucus penetrating systems.


Subject(s)
Nanoparticles/metabolism , Polyamines/metabolism , Mucous Membrane/metabolism , Nanoparticles/chemistry , Polyamines/chemistry , Spectroscopy, Fourier Transform Infrared
14.
Nanoscale ; 7(32): 13671-9, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26214263

ABSTRACT

The increasing use of nanoparticles in the pharmaceutical industry is generating concomitant interest in developing nanomaterials that can rapidly penetrate into, and permeate through, biological membranes to facilitate drug delivery and improve the bioavailability of active pharmaceutical ingredients. Here, we demonstrate that the permeation of thiolated silica nanoparticles through porcine gastric mucosa can be significantly enhanced by their functionalization with either 5 kDa poly(2-ethyl-2-oxazoline) or poly(ethylene glycol). Nanoparticle diffusion was assessed using two independent techniques; Nanoparticle Tracking Analysis, and fluorescence microscopy. Our results show that poly(2-ethyl-2-oxazoline) and poly(ethylene glycol) have comparable abilities to enhance diffusion of silica nanoparticles in mucin dispersions and through the gastric mucosa. These findings provide a new strategy in the design of nanomedicines, by surface modification or nanoparticle core construction, for enhanced transmucosal drug delivery.


Subject(s)
Drug Delivery Systems/methods , Gastric Mucins/chemistry , Nanomedicine/methods , Nanoparticles/chemistry , Polyamines/chemistry , Polyethylene Glycols/chemistry , Animals , Diffusion , Gastric Mucins/metabolism , Silicon Dioxide , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...