Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 11(12)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38140161

ABSTRACT

BACKGROUND: Myasthenia Gravis (MG) is a rare autoimmune disease presenting with auto-antibodies that affect the neuromuscular junction. In addition to symptomatic treatment options, novel therapeutics include monoclonal antibodies (mAbs). IMGT®, the international ImMunoGeneTics information system®, extends the characterization of therapeutic antibodies with a systematic description of their mechanisms of action (MOA) and makes them available through its database for mAbs and fusion proteins, IMGT/mAb-DB. METHODS: Using available literature data combined with amino acid sequence analyses from mAbs managed in IMGT/2Dstructure-DB, the IMGT® protein database, biocuration allowed us to define in a standardized way descriptions of MOAs of mAbs that target molecules towards MG treatment. RESULTS: New therapeutic targets include FcRn and molecules such as CD38, CD40, CD19, MS4A1, and interleukin-6 receptor. A standardized graphical representation of the MOAs of selected mAbs was created and integrated within IMGT/mAb-DB. The main mechanisms involved in these mAbs are either blocking or neutralizing. Therapies directed to B cell depletion and plasma cells have a blocking MOA with an immunosuppressant effect along with Fc-effector function (MS4A1, CD38) or FcγRIIb engager effect (CD19). Monoclonal antibodies targeting the complement also have a blocking MOA with a complement inhibitor effect, and treatments targeting T cells have a blocking MOA with an immunosuppressant effect (CD40) and Fc-effector function (IL6R). On the other hand, FcRn antagonists present a neutralizing MOA with an FcRn inhibitor effect. CONCLUSION: The MOA of each new mAb needs to be considered in association with the immunopathogenesis of each of the subtypes of MG in order to integrate the new mAbs as a viable and safe option in the therapy decision process. In IMGT/mAb-DB, mAbs for MG are characterized by their sequence, domains, and chains, and their MOA is described.

2.
Front Immunol ; 14: 1129323, 2023.
Article in English | MEDLINE | ID: mdl-37215135

ABSTRACT

Background: Cancer cells activate different immune checkpoint (IC) pathways in order to evade immunosurveillance. Immunotherapies involving ICs either block or stimulate these pathways and enhance the efficiency of the immune system to recognize and attack cancer cells. In this way, the development of monoclonal antibodies (mAbs) targeting ICs has significant success in cancer treatment. Recently, a systematic description of the mechanisms of action (MOA) of the mAbs has been introduced in IMGT/mAb-DB, the IMGT® database dedicated to mAbs for therapeutic applications. The characterization of these antibodies provides a comprehensive understanding of how mAbs work in cancer. Methods: In depth biocuration taking advantage of the abundant literature data as well as amino acid sequence analyses from mAbs managed in IMGT/2Dstructure-DB, the IMGT® protein database, allowed to define a standardized and consistent description of the MOA of mAbs targeting immune checkpoints in cancer therapy. Results: A fine description and a standardized graphical representation of the MOA of selected mAbs are integrated within IMGT/mAb-DB highlighting two main mechanisms in cancer immunotherapy, either Blocking or Agonist. In both cases, the mAbs enhance cytotoxic T lymphocyte (CTL)-mediated anti-tumor immune response (Immunostimulant effect) against tumor cells. On the one hand, mAbs targeting co-inhibitory receptors may have a functional Fc region to increase anti-tumor activity by effector properties that deplete Treg cells (Fc-effector function effect) or may have limited FcγR binding to prevent Teff cells depletion and reduce adverse events. On the other hand, agonist mAbs targeting co-stimulatory receptors may bind to FcγRs, resulting in antibody crosslinking (FcγR crosslinking effect) and substantial agonism. Conclusion: In IMGT/mAb-DB, mAbs for cancer therapy are characterized by their chains, domains and sequence and by several therapeutic metadata, including their MOA. MOAs were recently included as a search criterion to query the database. IMGT® is continuing standardized work to describe the MOA of mAbs targeting additional immune checkpoints and novel molecules in cancer therapy, as well as expanding this study to other clinical domains.


Subject(s)
Antibodies, Monoclonal , Neoplasms , Humans , Antibodies, Monoclonal/therapeutic use , Receptors, IgG , Databases, Protein , Immunotherapy
3.
Mol Immunol ; 151: 231-241, 2022 11.
Article in English | MEDLINE | ID: mdl-36179605

ABSTRACT

The antibody repertoire (Rep-seq) sequencing revolutionized the diversity of antigen B cell receptor studies, allowing deep and quantitative analysis to decipher the role of adaptive immunity in health and disease. Particularly, horse (Equus caballus) polyclonal antibodies have been produced and used since the century XIX to treat and prophylaxis diphtheria, tuberculosis, tetanus, pneumonia, and, more recently, COVID-19. However, our knowledge about the horse B cell receptors repertories is minimal. We present a deep horse antibody heavy chain repertoire (IGH) characterization of non-infected horses using NGS (Next generation sequencing). This study obtained a mean of 248,169 unique IgM clones and 66,141 unique IgG clones from four domestic adult horses. Rarefaction analysis showed sequence coverage was between 52 % and 82 % in IgM and IgG isotypes. We observed that besides horses antibody can use all functional IGHV genes, around 80 % of their antibodies use only three IGHV gene segments, and around 55 % use only one IGHJ gene segment. This limited VJ diversity seems to be compensated by the junctional diversity of these antibodies. We observed that the junctional diversity in horse antibodies is widespread, present in more than 90 % of horse antibodies. Besides this, the length of this region seems to be higher in horse antibodies than in other species. N1 and N2 nucleotides addition range from 0 to 111 nucleotides. In addition, around 45 % of the antibody clones have more than ten nucleotides in both the N1 and N2 junction regions. This diversity mechanism may be one of the most important in providing variability to the equine antibody repertoire. This study provides new insights regarding horse antibody composition, diversity generation, and particularities compared to other species, such as the frequency and length of N nucleotide addition. This study also points out the urgent need to better characterize TdT in horses and other species to better understand antibody repertoire characteristics.


Subject(s)
COVID-19 , Animals , Antibody Diversity , Horses , Immunoglobulin G/genetics , Immunoglobulin M/genetics , Nucleotides , Receptors, Antigen, B-Cell/genetics
4.
Nucleic Acids Res ; 50(D1): D1262-D1272, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34875068

ABSTRACT

IMGT®, the international ImMunoGeneTics information system®, http://www.imgt.org/, is at the forefront of the immunogenetics and immunoinformatics fields with more than 30 years of experience. IMGT® makes available databases and tools to the scientific community pertaining to the adaptive immune response, based on the IMGT-ONTOLOGY. We focus on the recent features of the IMGT® databases, tools, reference directories and web resources, within the three main axes of IMGT® research and development. Axis I consists in understanding the adaptive immune response, by deciphering the identification and characterization of the immunoglobulin (IG) and T cell receptor (TR) genes in jawed vertebrates. It is the starting point of the two other axes, namely the analysis and exploration of the expressed IG and TR repertoires based on comparison with IMGT reference directories in normal and pathological situations (Axis II) and the analysis of amino acid changes and functions of 2D and 3D structures of antibody and TR engineering (Axis III).


Subject(s)
Adaptive Immunity/immunology , Databases, Genetic , Immunogenetics , Vertebrates/genetics , Adaptive Immunity/genetics , Animals , Antibodies/classification , Antibodies/immunology , Humans , Immunoglobulins/genetics , Immunoglobulins/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Vertebrates/immunology
5.
PLoS One ; 14(3): e0213033, 2019.
Article in English | MEDLINE | ID: mdl-30822330

ABSTRACT

Chicken meat and eggs are important sources of food for the world population. The significant increase in food demand has pushed the food industry toward a rapid non-expensive production which in turn raises ethical issues. How chicken are cultivated and processed in food industry is no longer acceptable. Ethical and economical concerns emerging from chicken culling need to be solved in the near future. Indeed, in egg production industry, male chicken are killed at the age of 1-day post-hatching since they are not egg producers. A number of laboratory all over the world are looking for innovative non-invasive sexing methods to determine the sex of chicken in the early stages of the development before hatching. It will allow males' chicken elimination before the pain-feeling stages. In order to evaluate the efficiency of these methods, the scientific community need a reliable, easy to use and cost-effective in-ovo invasive sexing method. In this report, we developed two new invasive assays based on PCR and Q-PCR techniques respectively, which fulfil the above mentioned requirements. In the same line with other groups, we exploited the differences betweed males (ZZ) and females (ZW) chicken sexual chromosomes. We identified two genes, SWIM and Xho-I, on chromosome W and DMRT gene on chromosome Z allowing a clear discrimination between the two sexes using PCR and qPCR respectively. These two new genomic markers and their corresponding methods not only increase the accuracy but also reduce time and cost of the test compared to previously developed sexing methods. Depending on the technology available in the lab, one can choose between the two techniques requiring different machines and expertise.


Subject(s)
Chickens/genetics , Sex Determination Analysis/methods , Animals , Avian Proteins/genetics , Avian Proteins/metabolism , Chickens/physiology , Female , Male , Sensitivity and Specificity , Sex Chromosomes/genetics , Sex Determination Analysis/standards
6.
Mol Immunol ; 105: 251-259, 2019 01.
Article in English | MEDLINE | ID: mdl-30562645

ABSTRACT

Horse serum antibodies have been used for greater than a century for the treatment and prophylaxis of infectious diseases and envenomations. Little is known, however, about the immunogenetic diversity that produces horse serum antibodies. Here, we employed next-generation sequencing for a first-in-kind comprehensive analysis of the equine B-cell repertoire. Nearly 45,000 and 30,000 clonotypes were obtained for the heavy-chain (IGH) and lambda light-chain (IGL) loci, respectively. We observed skewed use of the common subgroups IGHV2 (92.49%) and IGLV8 (82.50%), consistent with previous reports, but also novel use of the rare genes IGHV6S1 and IGLV4S2. CDR-H3 amino acid composition revealed different amino acid patterns at positions 106 and 116 compared to human, rabbit, and mouse, suggesting that an extended conformation predominates among horse CDR-H3 loops. Our analysis provides new insights regarding the mechanisms employed to generate antibody diversity in the horse, and could be applicable to the optimized design of synthetic antibodies intended for future therapeutic use.


Subject(s)
Complementarity Determining Regions/genetics , Genetic Loci , High-Throughput Nucleotide Sequencing , Horses/genetics , Immunoglobulin Heavy Chains/genetics , Immunoglobulin lambda-Chains/genetics , Animals , Complementarity Determining Regions/immunology , Horses/immunology , Humans , Immunoglobulin Heavy Chains/immunology , Immunoglobulin lambda-Chains/immunology , Mice , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...