Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Imaging ; 10(8)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39194972

ABSTRACT

Agriculture plays a vital role in Bangladesh's economy. It is essential to ensure the proper growth and health of crops for the development of the agricultural sector. In the context of Bangladesh, crop diseases pose a significant threat to agricultural output and, consequently, food security. This necessitates the timely and precise identification of such diseases to ensure the sustainability of food production. This study focuses on building a hybrid deep learning model for the identification of three specific diseases affecting three major crops: late blight in potatoes, brown spot in rice, and common rust in corn. The proposed model leverages EfficientNetB0's feature extraction capabilities, known for achieving rapid high learning rates, coupled with the classification proficiency of SVMs, a well-established machine learning algorithm. This unified approach streamlines data processing and feature extraction, potentially improving model generalizability across diverse crops and diseases. It also aims to address the challenges of computational efficiency and accuracy that are often encountered in precision agriculture applications. The proposed hybrid model achieved 97.29% accuracy. A comparative analysis with other models, CNN, VGG16, ResNet50, Xception, Mobilenet V2, Autoencoders, Inception v3, and EfficientNetB0 each achieving an accuracy of 86.57%, 83.29%, 68.79%, 94.07%, 90.71%, 87.90%, 94.14%, and 96.14% respectively, demonstrated the superior performance of our proposed model.

2.
Sensors (Basel) ; 21(3)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494254

ABSTRACT

Given the excessive foul language identified in audio and video files and the detrimental consequences to an individual's character and behaviour, content censorship is crucial to filter profanities from young viewers with higher exposure to uncensored content. Although manual detection and censorship were implemented, the methods proved tedious. Inevitably, misidentifications involving foul language owing to human weariness and the low performance in human visual systems concerning long screening time occurred. As such, this paper proposed an intelligent system for foul language censorship through a mechanized and strong detection method using advanced deep Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) through Long Short-Term Memory (LSTM) cells. Data on foul language were collected, annotated, augmented, and analysed for the development and evaluation of both CNN and RNN configurations. Hence, the results indicated the feasibility of the suggested systems by reporting a high volume of curse word identifications with only 2.53% to 5.92% of False Negative Rate (FNR). The proposed system outperformed state-of-the-art pre-trained neural networks on the novel foul language dataset and proved to reduce the computational cost with minimal trainable parameters.


Subject(s)
Language , Neural Networks, Computer , Humans , Memory, Long-Term , Recognition, Psychology
3.
J Med Syst ; 39(2): 5, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25628161

ABSTRACT

The massive number of medical images produced by fluoroscopic and other conventional diagnostic imaging devices demand a considerable amount of space for data storage. This paper proposes an effective method for lossless compression of fluoroscopic images. The main contribution in this paper is the extraction of the regions of interest (ROI) in fluoroscopic images using appropriate shapes. The extracted ROI is then effectively compressed using customized correlation and the combination of Run Length and Huffman coding, to increase compression ratio. The experimental results achieved show that the proposed method is able to improve the compression ratio by 400 % as compared to that of traditional methods.


Subject(s)
Data Compression/methods , Esophagus/diagnostic imaging , Pharynx/diagnostic imaging , Algorithms , Fluoroscopy , Humans , Image Processing, Computer-Assisted/methods
4.
Med Image Comput Comput Assist Interv ; 11(Pt 2): 139-46, 2008.
Article in English | MEDLINE | ID: mdl-18982599

ABSTRACT

In this paper, we represent a new framework that performs automated local wall motion analysis based on the combined information derived from a rest and stress sequence (a full stress echocardiography study). Since cardiac data inherits time-varying and sequential properties, we introduce a Hidden Markov Model (HMM) approach to classify stress echocardiography. A wall segment model is developed for a normal and an abnormal heart and experiments are performed on rest, stress and rest-and-stress sequences. In an assessment using n = 44 datasets, combined rest-and-stress analysis shows an improvement in classification (84.17%) over individual rest (73.33%) and stress (68.33%).


Subject(s)
Algorithms , Artificial Intelligence , Echocardiography/methods , Exercise Test , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Ventricular Dysfunction, Left/diagnostic imaging , Humans , Image Enhancement/methods , Reproducibility of Results , Rest , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL