Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Med Chem Res ; 31(12): 2089-2102, 2022.
Article in English | MEDLINE | ID: mdl-36193545

ABSTRACT

Viral diseases are the cause of many global epidemics, leading to deaths, affecting the quality of life of populations, and impairing public health. The limitations in the treatment of viral diseases and the constant resistance to conventional antiviral treatments encourage researchers to discover new compounds. In this perspective, this literature review presents isolated molecules and extracts of natural products capable of inhibiting the activity of the nonstructural protein that acts as the RNA-dependent RNA polymerase. The literature review presented natural compounds with the potential to be tested as alternative medicines or used in the development of synthetic drugs to prevent the replication of RNA viruses, such as COVID-19, hepatitis C, and dengue viruses, among others. Natural products are known to exhibit remarkable activities in mitigation of different viral diseases, in addition, they help to decrease the aggravation of infections. Consequently, reducing hospitalization time and deaths.

2.
Dalton Trans ; 47(9): 3068-3073, 2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29200223

ABSTRACT

Several functional hybrid materials have been reported as immobilized porphyrin derivatives in various organic and inorganic host materials (polymers, mineral clays, silica, etc.), with potential applications in various fields, such as photochemistry, electrochemistry and heterogeneous catalysis. Layered double hydroxides (LDHs), commonly known as hydrotalcite-like materials, have also been analyzed for use as supports for metallocomplexes. Recently, nanocomposite materials with a core-shell structure produced by combining two kinds of nanometer-size materials have received considerable attention, since the use of these materials is a promising strategy to prevent the aggregation and self-oxidation of molecules, reducing the catalytic activity. In this study, monodispersed hierarchical layered double hydroxides on silica spheres (LDH@SiO2) with core-shell structures were developed for metalloporphyrin immobilization and the materials were used as the oxidant catalysts of different substrates.

3.
J Colloid Interface Sci ; 478: 374-83, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27322950

ABSTRACT

Nitrate-intercalated Mg-Al layered double hydroxides (LDHs) were synthesized and exfoliated in formamide. Reaction of the single layer suspension with thiosalicylic acid under different conditions afforded two types of solids: LDHA1, in which the outer surface was modified with the anion thiosalicylate, and LDHA2, which contained the anion thiosalicylate intercalated between the LDH layers. LDHA1 and LDHA2 were used as supports to immobilize neutral (FeP1 and FeP2) and anionic (FeP3) iron(III) porphyrins. For comparison purposes, the iron(III) porphyrins (FePs) were also immobilized on LDH intercalated with nitrate anions obtained by the co-precipitation method. Chemical modification of LDH facilitated immobilization of the FePs through interaction of the functionalizing groups in LDH with the peripheral substituents on the porphyrin ring. The resulting FePx-LDHAy solids were characterized by X-ray diffraction (powder) and UV-Vis and EPR spectroscopies and were investigated as catalysts in the oxidation of cyclooctene and cyclohexane. The immobilized neutral FePs and their homogeneous counterparts gave similar product yields in the oxidation of cyclooctene, suggesting that immobilization of the FePs on the thiosalicylate-modified LDHs only supported the catalyst species without interfering in the catalytic outcome. On the other hand, in the oxidation of cyclohexane, the thiosalicylate anions on the outer surface of LDHA1 or intercalated between the LDHA2 layers influenced the catalytic activity of FePx-LDHAy, leading to different efficiency and selectivity results. FeP1-LDHA2 performed the best (29.6% alcohol yield) due to changes in the polarity of the surface of the support and the presence of FeP1. Interestingly, FeP1 also performed better in solution as compared to the other FePs. Finally, it was possible to recycle FeP1-LDHA2 at least three times.

4.
Molecules ; 21(3): 291, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26938518

ABSTRACT

Layered materials are a very interesting class of compounds obtained by stacking of two-dimensional layers along the basal axis. A remarkable property of these materials is their capacity to interact with a variety of chemical species, irrespective of their charge (neutral, cationic or anionic). These species can be grafted onto the surface of the layered materials or intercalated between the layers, to expand or contract the interlayer distance. Metalloporphyrins, which are typically soluble oxidation catalysts, are examples of molecules that can interact with layered materials. This work presents a short review of the studies involving metalloporphyrin immobilization on two different anionic exchangers, Layered Double Hydroxides (LDHs) and Layered Hydroxide Salts (LHSs), published over the past year. After immobilization of anionic porphyrins, the resulting solids behave as reusable catalysts for heterogeneous oxidation processes. Although a large number of publications involving metalloporphyrin immobilization on LDHs exist, only a few papers have dealt with LHSs as supports, so metalloporphyrins immobilized on LHSs represent a new and promising research field. This work also describes new results on an anionic manganese porphyrin (MnP) immobilized on Mg/Al-LDH solids with different nominal Mg/Al molar ratios (2:1, 3:1 and 4:1) and intercalated with different anions (CO3(2-) or NO3(-)). The influence of the support composition on the MnP immobilization rates and the catalytic performance of the resulting solid in cyclooctene oxidation reactions will be reported.


Subject(s)
Anions/chemistry , Immobilized Proteins/chemistry , Metalloporphyrins/chemistry , Catalysis , Hydroxides/chemistry , Models, Molecular , Salts/chemistry
5.
Inorg Chem ; 51(3): 1569-89, 2012 Feb 06.
Article in English | MEDLINE | ID: mdl-22260179

ABSTRACT

Herein, we report the synthesis and characterization, through elemental analysis, electronic spectroscopy, electrochemistry, potentiometric titration, electron paramagnetic resonance, and magnetochemistry, of two dinuclear copper(II) complexes, using the unsymmetrical ligands N',N',N-tris(2-pyridylmethyl)-N-(2-hydroxy-3,5-di-tert-butylbenzyl)-1,3-propanediamin-2-ol (L1) and N',N'-bis(2-pyridylmethyl)-N,N-(2-hydroxybenzyl)(2-hydroxy-3,5-di-tert-butylbenzyl)-1,3-propanediamin-2-ol (L2). The structures of the complexes [Cu(2)(L1)(µ-OAc)](ClO(4))(2)·(CH(3))(2)CHOH (1) and [Cu(2)(L2)(µ-OAc)](ClO(4))·H(2)O·(CH(3))(2)CHOH (2) were determined by X-ray crystallography. The complex [Cu(2)(L3)(µ-OAc)](2+) [3; L3 = N-(2-hydroxybenzyl)-N',N',N-tris(2-pyridylmethyl)-1,3-propanediamin-2-ol] was included in this study for comparison purposes only (Neves et al. Inorg. Chim. Acta2005, 358, 1807-1822). Magnetic data show that the Cu(II) centers in 1 and 2 are antiferromagnetically coupled and that the difference in the exchange coupling J found for these complexes (J = -4.3 cm(-1) for 1 and J = -40.0 cm(-1) for 2) is a function of the Cu-O-Cu bridging angle. In addition, 1 and 2 were tested as catalysts in the oxidation of the model substrate 3,5-di-tert-butylcatechol and can be considered as functional models for catechol oxidase. Because these complexes possess labile sites in their structures and in solution they have a potential nucleophile constituted by a terminal Cu(II)-bound hydroxo group, their activity toward hydrolysis of the model substrate 2,4-bis(dinitrophenyl)phosphate and DNA was also investigated. Double electrophilic activation of the phosphodiester by monodentate coordination to the Cu(II) center that contains the phenol group with tert-butyl substituents and hydrogen bonding of the protonated phenol with the phosphate O atom are proposed to increase the hydrolase activity (K(ass.) and k(cat.)) of 1 and 2 in comparison with that found for complex 3. In fact, complexes 1 and 2 show both oxidoreductase and hydrolase/nuclease activities and can thus be regarded as man-made models for studying catalytic promiscuity.


Subject(s)
Catechol Oxidase/chemistry , Copper/chemistry , Hydrolases/chemistry , Models, Molecular , Catalysis , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...