Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
J Appl Toxicol ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567776

ABSTRACT

Rubus imperialis Chum. Schl. (Rosaceae) have demonstrated some pharmacological activities, including gastroprotective action. However, genotoxic effects of R. imperialis extract was also reported. Since niga-ichigoside F1 (NIF1) is a major compound of this plant species, and which has proven pharmacological properties, it is essential to investigate whether this compound is responsible for the observed toxicity. Therefore, the objective of this study was to analyze the effects of NIF1 on HepG2/C3A cells for possible cytogenotoxicity, cell cycle and apoptosis influence, and expression of genes linked to the DNA damage, cell cycle, cell death, and xenobiotic metabolism. The results showed no cytogenotoxic effects of NIF1 at concentrations between 0.1 and 20 µg/ml. Flow cytometry also showed no cell cycle or apoptosis disturbance. In the gene expression analysis, none of the seven genes investigated showed altered expression. The data indicate that NIF1 has no cytogenotoxic effects, and no interruption of the cell cycle, or induction of apoptosis, apparently not being responsible for the cytotoxic effects observed in the crude extract of R. imperialis.

2.
Phytomedicine ; 128: 155536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513379

ABSTRACT

BACKGROUND: Lung cancer, a chronic and heterogeneous disease, is the leading cause of cancer-related death on a global scale. Presently, despite a variety of available treatments, their effectiveness is limited, often resulting in considerable toxicity and adverse effects. Additionally, the development of chemoresistance in cancer cells poses a challenge. Trilobolide-6-O-isobutyrate (TBB), a natural sesquiterpene lactone extracted from Sphagneticola trilobata, has exhibited antitumor effects. Its pharmacological properties in NSCLC lung cancer, however, have not been explored. PURPOSE: This study evaluated the impact of TBB on the A549 and NCI-H460 tumor cell lines in vitro, examining its antiproliferative properties and initial mechanisms of cell death. METHODS: TBB, obtained at 98 % purity from S. trilobata leaves, was characterized using chromatographic techniques. Subsequently, its impact on inhibiting tumor cell proliferation in vitro, TBB-induced cytotoxicity in LLC-MK2, THP-1, AMJ2-C11 cells, as well as its effects on sheep erythrocytes, and the underlying mechanisms of cell death, were assessed. RESULTS: In silico predictions have shown promising drug-likeness potential for TBB, indicating high oral bioavailability and intestinal absorption. Treatment of A549 and NCI-H460 human tumor cells with TBB demonstrated a direct impact, inducing significant morphological and structural alterations. TBB also reduced migratory capacity without causing toxicity at lower concentrations to LLC-MK2, THP-1 and AMJ2-C11 cell lines. This antiproliferative effect correlated with elevated oxidative stress, characterized by increased levels of ROS, superoxide anion radicals and NO, accompanied by a decrease in antioxidant markers: SOD and GSH. TBB-stress-induced led to changes in cell metabolism, fostering the accumulation of lipid droplets and autophagic vacuoles. Stress also resulted in compromised mitochondrial integrity, a crucial aspect of cellular function. Additionally, TBB prompted apoptosis-like cell death through activation of caspase 3/7 stressors. CONCLUSION: These findings underscore the potential of TBB as a promising candidate for future studies and suggest its viability as an additional component in the development of novel anticancer drugs prototypes.


Subject(s)
Butyrates , Lung Neoplasms , Sesquiterpenes , Sesquiterpenes/pharmacology , Butyrates/pharmacology , Tracheophyta/chemistry , Cell Line, Tumor , Lung Neoplasms/drug therapy , Humans , A549 Cells , THP-1 Cells , Toxicity Tests , Cell Movement/drug effects , Caspase 3/metabolism , Caspase 7/metabolism , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Animals
3.
J Toxicol Environ Health A ; 87(7): 294-309, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38279841

ABSTRACT

Piperlongumine (PLN) is a biologically active alkaloid/amide derived from Piper longum, with known promising anticancer activity. The aim of this study was to compare the antiproliferative activity of PLN in human breast MCF-7 adenocarcinoma cell line with effects in HB4a normal mammary epithelial non-tumor cell line. The parameters examined were cell growth, viability, reactive oxygen species (ROS) levels and DNA damage, as well as the effects on the modulating targets responsible through regulation of these pathways. PLN increased ROS levels and expression of the SOD1 antioxidant enzyme. PLN inhibited the expression of the antioxidant enzymes catalase, TRx1, and PRx2. The ability of PLN to inhibit antioxidant enzyme expression was associated with the oxidative stress response. PLN induced genotoxicity in both cell lines and upregulated the levels of GADD45A mRNA and p21 protein. The DNA damage response ATR protein was downregulated in both cell lines and contributed to an enhanced PLN genotoxicity. In HB4a cells, Chk1 protein, and mRNA levels were also decreased. In response to elevated ROS levels and DNA damage induction, the cells were arrested at the G2/M phase, probably in an attempt to promote cell survival. Although cell viability was reduced in both cell lines, only HB4a cells underwent apoptotic cell death, whereas other types of cellular death may be involved in MCF-7 cells. Taken together, these data provide insight into the anticancer mechanisms attributed to PLN effects, which acts as an inhibitor of DNA damage response (DDR) proteins and antioxidant enzymes.


Subject(s)
Antioxidants , Benzodioxoles , DNA Damage , Humans , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , MCF-7 Cells , Apoptosis , Cell Cycle , Cell Cycle Checkpoints , RNA, Messenger , Cell Line, Tumor
4.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1561-1573, 2024 03.
Article in English | MEDLINE | ID: mdl-37672080

ABSTRACT

Zerumbone (ZER) is a phytochemical isolated from plants of the Zingiberaceae family. Numerous studies have demonstrated its diverse pharmacological properties, particularly its potent antitumorigenic activity. This study aimed to assess the antiproliferative effects of ZER on HT-29 cells cultivated in both two-dimensional (2D) monolayer and three-dimensional (3D) spheroid culture systems. The evaluation of growth (size), cell death, and cell cycle arrest in 3D spheroid HT-29 cells was correlated with mRNA expression data. Treatment of 2D cells revealed that ZER exhibited cytotoxicity at concentrations above 30 µM, and an IC50 of 83.54 µM (24-h post-ZER treatment) effectively suppressed cell migration. In the 3D model, ZER induced an increase in spheroid volume over a 72-h period attributed to disaggregation and reconfiguration of characteristic zones. Analysis of cell death demonstrated a significant rise in apoptotic cells after 24 h of ZER treatment, along with cell cycle arrest in the G1 phase. Furthermore, ZER treatment resulted in alterations in mRNA expression, affecting key signaling pathways involved in cell death (BCL2 and BBC3), endoplasmic reticulum stress (ERN1), DNA damage (GADD45A), cell cycle regulation (CDKN1A, NFKB1, MYC, and TP53), and autophagy (BECN1 and SQSTM1). These findings suggested that ZER holds promise as a potential candidate for the development of novel anticancer agents that can modulate crucial cell signaling pathways. Additionally, the use of the 3D culture system proved to be a valuable tool in our investigation.


Subject(s)
Antineoplastic Agents , Sesquiterpenes , Humans , HT29 Cells , Apoptosis , Antineoplastic Agents/pharmacology , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Cell Line, Tumor , RNA, Messenger
5.
Biomed Pharmacother ; 170: 115979, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061138

ABSTRACT

Lung cancer is one of the leading causes of cancer-related deaths in men and women worldwide. Current treatments have limited efficacy, cause significant side effects, and cells can develop drug resistance. New therapeutic strategies are needed to discover alternative anticancer agents with high efficacy and low-toxicity. TMBP, a biphenyl obtained by laccase-biotransformation of 2,6-dimethoxyphenol, possesses antitumor activity against A549 adenocarcinoma cells. Without causing damage to sheep erythrocytes and mouse peritoneal macrophages of BALB/c mice. In addition to being classified as a good oral drug according to in-silico studies. This study evaluated the in-vitro cytotoxic effect of TMBP on lung-cancer cell-line NCI-H460 and reports mechanisms on immunomodulation and cell death. TMBP treatment (12.5-200 µM) inhibited cell proliferation at 24, 48, and 72 h. After 24-h treatment, TMBP at IC50 (154 µM) induced various morphological and ultrastructural changes in NCI-H460, reduced migration and immunofluorescence staining of N-cadherin and ß-catenin, induced increased reactive oxygen species and nitric oxide with reduced superoxide radical-anion, increased superoxide dismutase activity and reduced glutathione reductase. Treatment also caused metabolic stress, reduced glucose-uptake, intracellular lactate dehydrogenase and lactate levels, mitochondrial depolarization, increased lipid droplets, and autophagic vacuoles. TMBP induced cell-cycle arrest in the G2/M phase, death by apoptosis, increased caspase-3/7, and reduced STAT-3 immunofluorescence staining. The anticancer effect was accompanied by decreasing PI3K, AKT, ARG-1, and NF-κB levels, and increasing iNOS. These results suggest its potential as a candidate for use in future lung anticancer drug design studies.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Female , Humans , Animals , Mice , Sheep , Lung Neoplasms/pathology , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation , Oxidative Stress , Stress, Physiological
6.
J Toxicol Environ Health A ; 86(22): 859-870, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37671809

ABSTRACT

Curcumin is an antiproliferative phytochemical extracted from Curcuma longa L and which has been studied in preclinical drug screening using cell monolayers and animal models. However, several limitations of these culture systems may be overcome by performing screening with three-dimensional (3-D) cell culture. The aim of this study was to investigate the effects of curcumin on cytotoxicity and genotoxicity as well as spheroid growth using cervical adenocarcinoma HeLa cell spheroids by performing RT-PCR mRNA expression of genes involved in cell death (CASP3, CASP8, CASP9, PARP1, BBC3, BIRC5, BCL2, TNF), autophagy (BECN1, SQSTM1), cell cycle regulation (TP53, C-MYC, NF-kB, CDKN1A, m-TOR, TRAF-2), DNA damage repair (H2AFX, GADD45A, GADD45G), oxidative stress (GPX1), reticulum stress (EIF2AK3, ERN1), and invasion (MMP1, MMP9) was investigated. Curcumin was cytotoxic in a concentration-dependent manner. Curcumin-treated spheroids exhibited lower proliferative recovery and cell proliferation attenuation, as observed in the clonogenic assay. Further, no marked genotoxicity was detected. Curcumin-treated spheroids displayed reduced expression of BECN1 (2.9×), CASP9 (2.1×), and PARP1 (2.1×) mRNA. PARP1 inhibition suggested disruption of essential pathways of proliferation maintenance. Downregulated expression of CASP9 mRNA and unchanged expression of CASP3/8 mRNA suggested caspase-independent cell death, whereas downregulated expression of BECN1 mRNA indicated autophagic disruption. Therefore, curcumin exhibits the potential for drug development with antiproliferative activity to be considered for use in cancers.


Subject(s)
Curcumin , Animals , Humans , Curcumin/pharmacology , Caspase 3 , HeLa Cells , Caspases , Cell Proliferation
7.
Nutrition ; 116: 112190, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37734118

ABSTRACT

OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is related to obesity, insulin resistance, dyslipidemia, and metabolic syndrome. The increasing prevalence of NAFLD results in a significant number of patients manifesting chronic liver disease over time. The aim of this study was to analyze the predictive factors to estimate NAFLD severity in patients who are candidates for Roux-en-Y gastric bypass. METHODS: This descriptive observational study was conducted with 136 obese patients who were candidates for Roux-en-Y gastric bypass and had mild, moderate, or severe NAFLD. RESULTS: Severe NAFLD was more prevalent among the men (P = 0.007), and mild NAFLD was more prevalent among the women (P = 0.007). Hyperferritinemia was observed in the group with severe NAFLD (P = 0.01). Neck circumference and waist-to-height ratio were associated with an increased risk when comparing the groups with mild and severe NAFLD and those with moderate and severe NAFLD (P = 0.023 and P = 0.001, respectively); the alanine aminotransferase (ALT) and aspartate aminotransferase ratio values were >1 (P = 0.002) in the same comparisons. The regression analyses showed that an increase of 1 ng/mL in vitamin D reduced the chances of severe steatosis by 10% (P = 0.043), and an increase of 1 U/L ALT increased the chances of severe steatosis by 13% (P = 0.002). CONCLUSION: High neck circumference and low waist-to-height ratio values, male sex, hyperferritinemia, increased serum ALT values, and decreased vitamin D levels were related to the risk for severe NAFLD.


Subject(s)
Gastric Bypass , Hyperferritinemia , Non-alcoholic Fatty Liver Disease , Humans , Male , Female , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/etiology , Hyperferritinemia/complications , Obesity/complications , Vitamin D , Alanine Transaminase
8.
Life Sci ; 330: 122033, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37598976

ABSTRACT

Aim Overcoming resistance to apoptosis and antimitotic chemotherapy is crucial for effective treatment of lung cancer. Diosgenin (DG), a promising phytochemical, can regulate various molecular pathways implicated in tumor formation and progression. However, the precise biological activity of DG in lung cancer remains unclear. This study aimed to investigate the antiproliferative activity of DG in NCI-H460 lung carcinoma cells to explore the underlying antimitotic mechanisms and alternative cell death pathways. MATERIALS AND METHODS: In a 2D culture system, we analyzed cell viability, multinucleated cell frequency, cell concentration, cell cycle changes, cell death induction, intracellular reactive oxygen species (ROS) production, and nuclear DNA damage, particularly in relation to target gene expression. We also evaluated the antiproliferative activity of DG in a 3D culture system of spheroids, assessing volume changes, cell death induction, and inhibition of proliferation recovery and clonogenic growth. KEY FINDINGS: DG reduced cell viability and concentration while increasing the frequency of cells with multiple nuclei, particularly binucleated cells resulting from daughter cell fusion. This effect was associated with genes involved in cytokinesis regulation (RAB35, OCRL, BIRC5, and AURKB). Additionally, DG-induced cell death was linked to necroptosis, as evidenced by increased intracellular ROS production and RIPK3, MLKL, TRAF2, and HSPA5 gene expression. In tumor spheroids, DG increased spheroid volume, induced cell death, and inhibited proliferation recovery and clonogenic growth. SIGNIFICANCE: Our study provides new insights into the biological activities of DG in lung cancer cells, contributing to the development of novel oncological therapies.


Subject(s)
Antimitotic Agents , Diosgenin , Lung Neoplasms , Humans , Cytokinesis , Necroptosis , Reactive Oxygen Species , Lung Neoplasms/drug therapy , Cell Division , Diosgenin/pharmacology , Lung
9.
Article in English | MEDLINE | ID: mdl-37516100

ABSTRACT

Silkworms (Bombyx mori) are lepidopterans of economic importance for global silk production. However, factors that directly affect the yield and quality of silkworm cocoon production, such as diseases and temperature fluctuations, cause great economic losses. Knowing how they respond to rearing temperature during the most critical stage of their life cycle (i.e., fifth instar) could provide information on their adaptation and improve silk production. In the current work, we analyzed transcriptional data from two groups of B. mori that were reared at 26 °C and 34 °C throughout the fifth instar. The silkworms and cocoons were weighed. In total, 3115 transcripts were differentially expressed (DE; including 1696 down-regulated and 1419 up-regulated) among the 29,157 sequences found by transcriptome assembly. We emphasize the genes associated with immunological response, transcription factors, silk biosynthesis, and heat shock proteins, among the DE transcripts in response to the temperature conditions. Silkworms reared at 34 °C presented a reduced mean body weight (-0.944 g in comparison to the 26 °C group), which had a direct impact on the weight of cocoons formed and the silk conversion rate. These changes were statistically significant when compared to silkworms reared at 26 °C. Mortality rates (6 and 9 %, at 26 °C and 34 °C, respectively) were similar to those obtained in breeding fields. The findings provide information on the biological processes involved in the temperature response mechanism of silkworms, as well as information that may be used in future climatization processes at rearing facilities and in breeding for improved thermotolerance.


Subject(s)
Bombyx , Lepidoptera , Animals , Bombyx/genetics , Lepidoptera/genetics , Temperature , Silk/genetics , Silk/metabolism , Transcriptome
10.
J Toxicol Environ Health A ; 86(11): 361-371, 2023 06 03.
Article in English | MEDLINE | ID: mdl-37096566

ABSTRACT

Plants with medicinal potential may also produce adverse effects in humans. This seems to be the case for the species Rubus rosifolius, where preliminary studies demonstrated genotoxic effects attributed to extracts obtained from leaves and stems of this plant using on HepG2/C3A human hepatoma cells as a model. Considering the beneficial properties of this plant as an antidiarrheal, analgesic, antimicrobial, and antihypertensive and its effects in the treatment of gastrointestinal diseases, the present study was developed with the aim of determining the cytotoxic and genotoxic potential of extracts of leaves and stems of R. rosifolius in primary without metabolic competence in human peripheral blood mononuclear cells (PBMC). Cell viability analyses at concentrations of between 0.01 and 100 µg/ml of both extracts did not markedly affect cell viability. In contrast, assessment of the genotoxic potential using the comet assay demonstrated significant damage to DNA within PBMC from a concentration of 10 µg/ml in the stem extract, and a clastogenic/aneugenic response without cytokinesis-block proliferation index (CBPI) alterations at concentrations of 10, 20, or 100 µg/ml for both extracts. Under our experimental conditions, the data obtained demonstrated genotoxic and mutagenic effects attributed to extracts from leaves and stems of R. rosifolius in cells in the absence of hepatic metabolism.


Subject(s)
Leukocytes, Mononuclear , Rubus , Humans , Plant Extracts/toxicity , Micronucleus Tests , Comet Assay , DNA Damage , Mutagens , Plant Leaves
11.
Life Sci ; 319: 121530, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36863486

ABSTRACT

AIMS: Hepatocellular Carcinoma (HCC) is a primary neoplasm derived from hepatocytes with low responsiveness and recurrent chemoresistance. Melatonin is an alternative agent that may be helpful in treating HCC. We aimed to study in HuH 7.5 cells whether melatonin treatment exerts antitumor effects and, if so, what cellular responses are induced and involved. MAIN METHODS: We evaluated the effects of melatonin on cell cytotoxicity and proliferation, colony formation, morphological and immunohistochemical aspects, and on glucose consumption and lactate release. KEY FINDINGS: Melatonin reduced cell motility and caused lamellar breakdown, membrane damage, and reduction in microvillus. Immunofluorescence analysis revealed that melatonin reduced TGF and N-cadherin expression, which was further associated with inhibition of epithelial-mesenchymal transition process. In relation to the Warburg-type metabolism, melatonin reduced glucose uptake and lactate production by modulating intracellular lactate dehydrogenase activity. SIGNIFICANCE: Our results indicate that melatonin can act upon pyruvate/lactate metabolism, preventing the Warburg effect, which may reflect in the cell architecture. We demonstrated the direct cytotoxic and antiproliferative effect of melatonin on the HuH 7.5 cell line, and suggest that melatonin is a promising candidate to be further tested as an adjuvant to antitumor drugs for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Melatonin , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Melatonin/pharmacology , Melatonin/therapeutic use , Cell Line, Tumor , Lactates
12.
Toxicol In Vitro ; 86: 105485, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36279965

ABSTRACT

Rubus rosifolius, popularly known as "red mulberry", is a common medicinal plant in southern Brazil and is used as an antidiarrheal, analgesic, antimicrobial and antihypertensive, and to treat stomach diseases. The aim of this study was to analyze the R. rosifolius stem extract (RrSE) for possible in vitro cytotoxic and genotoxic effects, using the comet assay and the micronucleus test to assess genotoxicity, and flow cytometry to assess the impact on the cell cycle and apoptosis in HepG2/C3A cells, in addition to evaluating the expression of genes linked to the induction of DNA damage, cell cycle, apoptosis and metabolism of xenobiotics. The MTT assay observed no cytotoxic effects at concentrations between 0.01 and 100 µg/mL of the extract. However, genotoxic effects occurred in treatments with the extract from a 1 µg/mL concentration. Flow cytometry analysis revealed a significant increase in cells in the G2/M phase after treatment with 10 µg/mL, a decrease in cells in the G0/G1 phase in the treatment with 100 µg/mL, and a significant increase in total apoptotic cells. In the gene expression analysis, an increase in the CYP1A2 xenobiotics metabolizing gene expression was observed. Despite the promising pharmacological effects of R. rosifolius, the results revealed that the RrSE has genotoxic effect and induces apoptosis in HepG2/C3A cells, indicating danger in using this plant extract by humans.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Rubus , Humans , Apoptosis , DNA Damage , Plant Extracts/toxicity , Plant Extracts/analysis , Hep G2 Cells , Cell Line
13.
Mycopathologia ; 187(5-6): 509-516, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36057915

ABSTRACT

BACKGROUND: Phenotypic switching generates fungal colonies with altered morphology and allows pathogens to adapt to changing environments. OBJECTIVE: This study investigated the structure and genetic factors of switched morphotypes colonies in Candida tropicalis. METHODS: Morphotypes of C. tropicalis comprised the clinical strain 49.07 that exhibited smooth colony phenotype and switched (crepe and rough) morphotypes that showed colonies with marked structural variations, including wrinkled surface, depressions areas, and irregular edges (structured morphology). The morphotypes were analyzed for the presence and distribution of the extracellular matrix (ECM) at the ultrastructural level-SEM. The composition of the ECM and the percentage of hyphae in colonies were evaluated. The expression of EFG1 (Enhanced filamentous growth protein 1), WOR1 (White-opaque regulator 1), and BCR1 (Biofilm and cell wall regulator 1) in the morphotypes was measured by RT-qPCR. RESULTS: Colonies of the switched variants exhibited distinct arrangements of ECM compared to the smooth phenotype (clinical strain). In addition, rough variant colonies showed higher amounts of total carbohydrates and proteins in ECM (p < 0.05). Switched (crepe and rough) colonies exhibited a higher percentage of hyphae throughout their development (p < 0.05). The mRNA expression levels of EFG1, WOR1, and BCR1 in the rough morphotype were significantly higher than they were in the smooth morphotype. In addition, there was a positive correlation between the expression of these genes and filamentation (hyphae formation) of the rough morphotype (r2 > 0.9472, p < 0.05). CONCLUSION: Structural variations in switched morphotypes colonies of C. tropicalis seem to be associated with increased hyphae growth and the amount and distribution of ECM. Switched colonies have distinct expressions of the EFG1, WOR1, and BCR1 master regulators genes.


Subject(s)
Candida tropicalis , Hyphae , Candida tropicalis/genetics , Phenotype , Hyphae/genetics , Extracellular Matrix , Biofilms
14.
Toxicol In Vitro ; 85: 105474, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36122806

ABSTRACT

Zerumbone (ZER) is a phytochemical with antioxidant and antiproliferative properties. This study evaluated the cytoxicity of ZER combined with chemotherapeutic agents and the expression of mRNA genes related to cell cycle, cell death, xenobiotic metabolism, DNA damage, and endoplasmic reticulum (ER) stress in HepG2/C3A cells. ZER was cytotoxic (IC50, 44.31 µM). ZER-induced apoptosis was related to BBC3 and ERN1 upregulation (ER stress), and its antiproliferative effects were attributable to MYC, IGF1, and NF-kB mRNA inhibition. ZER-induced G2/M arrest and DNA damage was associated with mRNA expression of cell cycle (CDKN1A) and DNA damage (GADD45A) genes. Increased CYP1A2 and CYP2C19 mRNA expression suggested ZER metabolization, and reduced CYP1A1 and CYP2D6 expression indicated a longer time of action of ZER in the cell, enhancing its pharmacological effect. ZER downregulated TP53, PARP1, BIRC5 (apoptosis), and MAP1LC3A (autophagy). In apoptosis assay, the data of the association treatments with ZER suggested antagonism. In cytotoxicity assay, the data of the association treatments with ZER suggested synergism action to cisplatin and antagonism action to doxorubicin and 5-fluorouracil. Thus, ZER has potential for application in chemotherapy as it modulates mRNA targets; however, it may not have the desired efficiency when combined with other chemotherapeutic agents.


Subject(s)
Antineoplastic Agents , Sesquiterpenes , Cytochrome P-450 CYP1A2 , Cytochrome P-450 CYP2C19 , Cisplatin/pharmacology , Antioxidants/pharmacology , NF-kappa B , Cytochrome P-450 CYP2D6/pharmacology , Cytochrome P-450 CYP1A1 , Xenobiotics/pharmacology , Sesquiterpenes/pharmacology , Apoptosis , DNA Damage , Antineoplastic Agents/pharmacology , Phytochemicals/pharmacology , RNA, Messenger , Doxorubicin/pharmacology , Fluorouracil/pharmacology , Cell Line, Tumor
15.
Toxicol Appl Pharmacol ; 452: 116178, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35914560

ABSTRACT

1α, 25, dihydroxyvitamin D3 (1,25D), the active form of vitamin D3, has antitumor properties in several cancer cell lines in vitro. Salinomycin (Sal) has anticancer activity against cancer cell lines. This study aims to examine the cytotoxic and antiproliferative effect of Sal associated with 1,25D on MCF-7 breast carcinoma cell line cultured in monolayer (2D) and three-dimensional models (mammospheres). We also aim to evaluate the molecular mechanism of Sal and 1,25D-mediated effects. We report that Sal and 1,25D act synergistically in MCF-7 mammospheres and monolayer causing G1 cell cycle arrest, reduction of mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) overproduction with a long-lasting cytotoxic response represented by clonogenic and mammosphere assay. We observed the induction of cell death by apoptosis with upregulation in mRNA levels of apoptosis-related genes (CASP7, CASP9, and BBC3). Extensive cytoplasmic vacuolization, a morphological characteristic found in paraptosis, was also seen and could be triggered by endoplasmic reticulum stress (ER) as we found transcriptional upregulation of genes related to ER stress (ATF6, GADD153, GADD45G, EIF2AK3, and HSPA5). Overall, Sal and 1,25D act synergistically, inhibiting cell proliferation by activating simultaneously multiple death pathways and may be a novel and promising luminal A breast cancer therapy strategy.


Subject(s)
Antineoplastic Agents , Endoplasmic Reticulum Stress , Antineoplastic Agents/pharmacology , Apoptosis , Cell Culture Techniques, Three Dimensional , Cell Line, Tumor , Cholecalciferol/pharmacology , Humans , MCF-7 Cells , Pyrans
16.
Article in English | MEDLINE | ID: mdl-35914860

ABSTRACT

Preclinical studies have shown that diosgenin, a steroidal sapogenin, is a promising phytochemical for treating different pathological conditions, such as cancer, diabetes, and cardiovascular diseases. However, the toxicological safety of this molecule for therapeutic use in humans needs to be better understood. Thus, this study aimed to evaluate the mechanisms of action of diosgenin in HepG2/C3A human hepatocellular carcinoma cells. Cytotoxicity, genotoxicity, alterations in the cell cycle, and cell death (apoptosis) were investigated and associated with the gene expression profile of pathways involved in these processes. The effects of diosgenin on the growth of spheroids were also tested. Diosgenin induced a dose-dependent reduction in cell viability and cell cycle arrest in S and G2/M phases and apoptosis in response to DNA damage. Apoptosis was associated with an increase in the expression of BBC3, a participant in the intrinsic apoptosis pathway. Diosgenin also promoted an increase in volume and greater cellular breakdown in spheroids. These results allowed a better understanding of the toxicity of diosgenin in human cells and contributed to the development of treatments based on this phytochemical.


Subject(s)
Carcinoma, Hepatocellular , Diosgenin , Liver Neoplasms , Apoptosis , Apoptosis Regulatory Proteins , Carcinoma, Hepatocellular/genetics , Cell Communication , Diosgenin/pharmacology , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Proto-Oncogene Proteins
17.
Int J Obes (Lond) ; 46(11): 2006-2012, 2022 11.
Article in English | MEDLINE | ID: mdl-35987956

ABSTRACT

BACKGROUND/OBJECTIVE: There is evidence that metabolic profile changes after Roux-Y gastric bypass (RYGB), especially due to modifications in the gastrointestinal tract. In addition, previous studies have suggested that probiotics can modify the microbiome and produce metabolites important for metabolic health maintenance. In this sense, the aim of this study was to verify the influence of probiotic supplementation on the plasma metabolite profile after RYGB. METHODS: This was a randomized, double-blind, placebo-controlled clinical trial conducted with 31 patients subjected to RYGB surgery, randomized in probiotic group that was supplemented with a probiotic supplement (FloraVantage®) for 3 months after surgery or a placebo group. Plasma metabonomics was performed using nuclear magnetic resonance (NMR) at the preoperative period (T0) and at 45-50 days (T1) and 90-95 days (T2) during the postoperative period/intervention. RESULTS: Reductions in trimethylamine-N-oxide (TMAO) and alanine were observed in both groups, however this reduction was greater in the probiotic group (TMAO 13.82%, p = 0.01 and alanine 14.03%, p = 0.03) at T2. Additionally, ß-hydroxybutyrate (BHB) levels increased 10.77% in the probiotic group (p = 0.03) compared to the placebo group at T2. CONCLUSION: Supplementation with Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 was able to associate with significant differences in relevant plasma metabolites associated with improved metabolic health.


Subject(s)
Gastric Bypass , Probiotics , Humans , 3-Hydroxybutyric Acid , Prospective Studies , Blood Glucose/metabolism , Probiotics/therapeutic use , Dietary Supplements , Double-Blind Method , Alanine , Oxides
18.
J Toxicol Environ Health A ; 85(21): 896-911, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-35950849

ABSTRACT

Fluopsin C is an antibiotic compound derived from secondary metabolism of different microorganisms, which possesses antitumor, antibacterial, and antifungal activity. Related to fluopsin C antiproliferative activity, the aim of this study was to examine the following parameters: cytotoxicity, genotoxicity, cell cycle arrest, cell death induction (apoptosis), mitochondrial membrane potential (MMP), colony formation, and mRNA expression of genes involved in adaptive stress responses and cellular death utilizing a monolayer. In addition, a three-dimensional cell culture was used to evaluate the effects on growth of tumor spheroids. Fluopsin C was cytotoxic (1) producing cell division arrest in the G1 phase, (2) elevating expression of mRNA of the CDKN1A gene and (3) decrease in expression of mRNA H2AFX gene. Further, fluopsin C enhanced DNA damage as evidenced by increased expression of mRNA of GADD45A and GPX1 genes, indicating that reactive oxygen species (ROS) may be involved in the observed genotoxic response. Reticulum stress was also detected as noted from activation of the ribonuclease inositol-requiring protein 1 (IRE1) pathway, since a rise in mRNA expression of the ERN1 and TRAF2 genes was observed. During the cell death process, an increase in mRNA expression of the BBC3 gene was noted, indicating participation of this antibiotic in oncotic (ischemic) cell death. Data thus demonstrated for the first time that fluopsin C interferes with the volume of tumor spheroids, in order to attenuate their growth. Our findings show that fluopsin C modulates essential molecular processes in response to stress and cell death.


Subject(s)
Apoptosis , DNA Damage , Anti-Bacterial Agents/pharmacology , Cell Death , Humans , Hydroxylamines , MCF-7 Cells , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism
19.
Toxicol In Vitro ; 83: 105392, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35605793

ABSTRACT

Pentaclethra macroloba (Willd.) Kuntze seeds oil has been used as a topical healing agent, applied mainly to parturients and snake bites. The objective was to investigate the effects of pracaxi oil (POP) on HepG2/C3A cells under cytogenotoxicity, cell cycle and apoptosis influence, and expression of metabolism and other related cell types proliferation genes. Cytotoxicity was analyzed by MTT test and apoptosis and cell cycle interferences by flow cytometry. To identify genotoxicity were used comet and micronucleus tests. RT-qPCR investigated gene expression. PO chemical characterization has shown two significant triterpenes, identified as oleanolic acid and hederagenin. The results showed that the PO did not reduce cell viability at concentrations ranging from 31 to 500 µg/ml. Comet and micronucleus assays revealed the absence of genotoxic effects, and flow cytometry showed no cell cycle or apoptosis disturbance. RT-qPCR indicated that PO up-regulated genes related to metabolism (CYP3A4, CYP1A2, CYP1A1), cell proliferation (mTOR), and oxidative stress (GPX1). The data indicate that PO has no cytogenotoxic effects and suggest that it activated the PI3/AKT/mTOR cascade of cell growth and proliferation. Inside the cells, the PO activated xenobiotic metabolizing genes, responsible for reactive oxygen species (ROS) generation, can neutralize ROS with increased GPX1 gene expression without genetic damage, interruption of the cell cycle, or induction of apoptosis.


Subject(s)
Oxidative Stress , Xenobiotics , Cell Proliferation , DNA Damage , Hep G2 Cells , Humans , Reactive Oxygen Species/metabolism , TOR Serine-Threonine Kinases/metabolism , Xenobiotics/pharmacology
20.
Toxicol Mech Methods ; 32(5): 341-351, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34806536

ABSTRACT

Salinomycin (SAL) is a monocarboxylic polyether ionophore antibiotic isolated from Streptomyces albus. It exhibits an effective antitumor potential against numerous human cancer cells. This study aimed to assess the antiproliferative effects of SAL in human hepatocellular carcinoma HepG2/C3a cell line. We investigated the effects of SAL on cell growth, DNA damage induction, cell cycle changes and apoptosis; and relative changes in expression of cell cycle-related, apoptosis-related, and CYP450 genes. SAL induced cell cycle arrest in the G2/M phase, upregulation of CDKN1A and GADD45A and downregulation of cyclin genes including CCNB1 and CCNA2. SAL effectively suppressed mRNA levels of CTNNB1 gene, an important oncogene that promotes tumorigenesis. The decrease of HepG2/C3A cells' survival can also be due to downregulation of antiapoptotic BCL-2 expression, thus promoting the induction of apoptosis by SAL. This study also demonstrated the ability of SAL in modulating hepatic cytochrome P450 (CYP) mRNA expression, such that SAL caused the upregulation of CYP1A members and CYP3A5; and downregulation of CYP3A4. Taken together, these data contribute to the understanding of the mechanism of action of SAL, highlighting that metabolizing enzymes modulated by SAL can interfere with chemotherapy treatment and it must be considered in associated treatments.


Subject(s)
Apoptosis , Liver Neoplasms , Cell Cycle , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Cytochrome P-450 Enzyme System/genetics , Hep G2 Cells , Humans , Liver Neoplasms/metabolism , Pyrans , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...