Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Biosci ; 36(7): 1075-1082, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36915931

ABSTRACT

OBJECTIVE: Animal feed companies and researchers are currently embarking on quests for feed additives that could combat the pathogens while promoting growth as well as maintaining quality products. The current study aimed to evaluate the effects of onion extracts on growth performance, carcass quality, and bone morphometrics of broiler chickens. METHODS: A total number of 200 one-day-old unsexed Ross 308 broiler chicks were assigned to 5 treatment groups, replicated 4 times. Each replicate (pens) held 10 chickens in a completely randomized design. The experimental diets were then randomly allotted to the pens which act as experimental units. The isoenergetic and isonitrogenous diets were formulated by including onion extracts at 0, 5, 10, 15, or 25 g/kg in a complete broiler diet. Feed intake, and body weight, were recorded then used to calculate feed conversion ratio. At the end of the experiment (42 days), four chickens from each pen were randomly selected for slaughter for carcass, bone morphology and sensory evaluation. RESULTS: Results showed that onion extract supplementation did not affect (p>0.05) growth performances and meat sensory evaluation. However, there was a significantly increased (p<0.05) meat shear force in groups receiving onion extracts dietary treatments. Furthermore, onion extracts improved (p<0.05) bone morphology of broiler chickens in terms of weight, diameter, calcium, and phosphorous contents. CONCLUSION: In conclusion, onion extracts can be safely included in a commercial broiler diet as a growth promoter without causing adverse effects on growth performance traits and carcass quality in chickens. Onion extract supplementation improved tibia bone growth and strength in broiler chickens.

2.
Biol Trace Elem Res ; 201(7): 3520-3527, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36109446

ABSTRACT

This review is intended to provide recent published information on trace elements from edible insects from various environments. Recently, insects are gaining popularity as food proteins in developing countries and press higher demand for edible insects since they may provide similar nutritional value as meat. Insects have been part of the human diet in the world for decades and at least 1900 insect species are considered edible. Furthermore, insects play a crucial role in socioeconomic by contributing to the world's food security as well as eradicating poverty in rural communities. Generally, edible insects are considered a readily available source of proteins, carbohydrates, and chitin. They also contain considerable amounts of trace elements such as iron, zinc, copper, and manganese. It has been observed that there is a great variation between mineral contents found in insects of the same or different species. Knowledge and comprehensive understanding of trace element contents of edible insects are crucial to fully maximise their utilisation in diets and prevent mineral deficiency in human beings and animals. However, most of the research on insects has focused on the nutritional contents of insects with less attention given to other nutritional components such as minerals and trace elements. The available data on trace elements from edible insects as food is limited and makes it difficult to draw estimations for the nutrient intake of humans and animals. Therefore, this review aimed to provide comprehensive information on availability of iron, zinc, copper, and manganese from selected edible insects, functions, and deficiencies in both humans and animals.


Subject(s)
Edible Insects , Trace Elements , Animals , Humans , Manganese , Copper , Zinc , Minerals , Iron , Insecta
3.
Sci Rep ; 12(1): 21335, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36494497

ABSTRACT

The therapeutic benefits of phenolic compounds found in plants are well known. The purpose of this study was to determine the phenolic content of ten plant species used as ethnoveterinary treatments in Namibia's Omusati and Kunene regions. The plants of concern were Aloe esculenta, Fockea angustifolia, Boscia albitrunca, Combretum imberbe, Acacia nilotica, Colophospermum mopane, Acacia erioloba, Ziziphus mucronata, Ximenia americana, and Salvadora persica. An LC-MS approach was used to identify the compounds. To analyse high-resolution UPLC-UV/MS, a Waters Acquity ultra-performance liquid chromatograph (UPLC) with a photodiode array detector was connected to a Waters Synapt G2 quadrupole time-of-flight mass spectrometer (MS). The current study identified a total of 29 phenolic compounds. Flavonoids (epicatechin, (-)-Epigallocatechin, and rutin,) were the most abundant, followed by 2R, 3S-Piscidic acid. Methylisocitric acid was found in all species investigated, with the highest quantities in A. esculenta and X. americana leaf extracts. There were differences in composition and quantity of phenolic compounds in aerial and ground sections between species. The overall findings of the present study would act as a standard for subsequent investigations into the pharmacological potentials of plants species utilized as ethnoveterinary remedies. Priority should be given to isolating, purifying, and defining the active compounds responsible for these plants' activity.


Subject(s)
Acacia , Aizoaceae , Ziziphus , Plant Extracts/pharmacology , Phenols/analysis , Chromatography, High Pressure Liquid , Ziziphus/chemistry , Acacia/chemistry
4.
Trop Anim Health Prod ; 54(5): 263, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35960378

ABSTRACT

This study determined the effect of purified condensed tannin inclusion levels in a diet on production, haematological indices, blood biochemical components, meat quality and methane emission by yearling indigenous male Bapedi sheep on a grass hay and sheep pellet-based diet in a 28-day trial. The diets contained similar (P > 0.05) nutrients but with different (P < 0.05) purified condensed tannin supplementation levels. A complete randomized design was used. Twenty-four yearling male Bapedi sheep were assigned to four dietary treatments having different purified condensed tannin levels of 0 (GH80P20PCT0), 30 (GH80P20PCT30), 40 (GH80P20PCT40) and 50 (GH80P20PCT50) g/kg DM. A quadratic type of equation was also used to determine condensed tannin supplementation levels for optimal performance and methane emission reduction by sheep. Supplementing diets with purified condensed tannins did not affect (P > 0.05) diet intake, digestibility and live weight gain of male Bapedi sheep. Supplementing diets with purified condensed tannins did not affect (P > 0.05) blood components of male Bapedi sheep. Inclusion of condensed tannins in the diets did not affect (P > 0.05) Bapedi sheep meat pH and sensory attributes. However, supplementing diets with purified condensed tannins decreased (P < 0.05) methane emission by 51 to 60%. A 49.08 g supplementation level with purified condensed tannins per kg DM diet was calculated, with the use of quadratic equations, to result in the lowest methane emission by male Bapedi sheep. The meat of male Bapedi rams on diets containing 30, 40 or 50 g of purified condensed tannins per kg DM contained higher (P < 0.05) antioxidant activities than those from rams fed a diet without purified condensed tannins. These results indicate that purified condensed tannin supplementation levels of 0, 30, 40 or 50 g/kg DM diet had no adverse effects on growth performance, blood profiles and meat sensory attributes of male Bapedi sheep. However, supplementation levels of 30, 40 or 50 g of purified condensed tannins per kg DM diet reduced methane emission by 51 to 60%, and increased sheep meat antioxidant activity values. Supplementing diets with purified condensed tannins has the potential to reduce methane production and emission by sheep. However, long-term studies are recommended to ascertain the present findings.


Subject(s)
Methane , Proanthocyanidins , Animal Feed/analysis , Animals , Diet/veterinary , Digestion , Male , Meat , Rumen , Sheep , Tannins
SELECTION OF CITATIONS
SEARCH DETAIL
...