Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mycologia ; 114(2): 270-302, 2022.
Article in English | MEDLINE | ID: mdl-35394897

ABSTRACT

The Roseinae clade is a lineage of the genus Russula primarily composed of species of Russula subsect. Roseinae. Species in this morphologically distinct clade possess a white to pale cream spore print, mild taste, positive reaction to sulfovanillin, and primordial hyphae with acid-resistant crystals in the pileipellis. Here, we present a morphological and phylogenetic assessment that distinguishes seven eastern North American species of the core Roseinae lineage and a new subsection, Russula subsection Albidinae, to accommodate members of the Albida clade. We assign the previously described species R. peckii, R. rubellipes, and R. pseudopeckii to three species-level clades, and three other species, R. cardinalis, R. cordata, and R. rheubarbarina, are described as new. Comparative morphological analyses reveal differences in the conformation of terminal elements in the pileipellis, spore size, hymenial cystidia contents, and pigmentation on the stipe surface as key features to recognize species in the group. Based on the analysis of publicly available data, we recognize a potential total of nine temperate North American species within R. subsect. Roseinae, in addition to four from Central America, two from Europe, and 14 from Asia.


Subject(s)
Agaricales , Agaricales/genetics , Asia , Central America , North America , Phylogeny
2.
Sci Rep ; 12(1): 2826, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35181709

ABSTRACT

Dry dipterocarp forests are among the most common habitat types in Thailand. Russulaceae are known as common ectomycorrhizal symbionts of Dipterocarpaceae trees in this type of habitat. The present study aims to identify collections of Russula subsection Amoeninae Buyck from dry dipterocarp forests in Thailand. A multi-locus phylogenetic analysis placed Thai Amoeninae collections in two novel lineages, and they are described here as R. bellissima sp. nov. and R. luteonana sp. nov. The closest identified relatives of both species were sequestrate species suggesting that they may belong to drought-adapted lineages. An analysis of publicly available ITS sequences in R. subsect. Amoeninae did not confirm evidence of any of the new species occurring in other Asian regions, indicating that dry dipterocarp forests might harbor a novel community of ectomycorrhizal fungi. Macromorphological characters are variable and are not totally reliable for distinguishing the new species from other previously described Asian Amoeninae species. Both new species are defined by a combination of differentiated micromorphological characteristics in spore ornamentation, hymenial cystidia and hyphal terminations in the pileipellis. The new Amoeninae species may correspond to some Russula species collected for consumption in Thailand, and the detailed description of the new species can be used for better identification of edible species and food safety in the region.


Subject(s)
Basidiomycota/genetics , DNA, Fungal/isolation & purification , Dipterocarpaceae/genetics , Phylogeny , Basidiomycota/classification , DNA, Fungal/genetics , Dipterocarpaceae/classification , Ecosystem , Forests , Mycorrhizae/classification , Mycorrhizae/genetics , Thailand , Tropical Climate
3.
PLoS One ; 16(10): e0257616, 2021.
Article in English | MEDLINE | ID: mdl-34644307

ABSTRACT

Species of the genus Russula are key components of ectomycorrhizal ecosystems worldwide. Nevertheless, their diversity in the tropics is still poorly known. This study aims to contribute to the knowledge of the diversity of Russula species classified in subsection Roseinae based on specimens recently collected in tropical montane rainforests in western Panama. A five gene multilocus phylogeny based on the nuclear markers ITS nrDNA, MCM7, RPB1, RPB2 and TEF-1α was constructed to identify the systematic position of 22 collections from Panama. Four new species, Russula cornicolor, Russula cynorhodon, Russula oreomunneae and Russula zephyrovelutipes are formally described and illustrated. None of the four species are sister species and they are more closely related to North American or Asian species. Two of the newly described species were associated with the ectomycorrhizal tree species Oreomunnea mexicana, while the other two species were associated with Quercus species. All four species are so far only known from mountains in western Panama.


Subject(s)
Basidiomycota/classification , Mycorrhizae/classification , Basidiomycota/genetics , Biodiversity , DNA, Fungal/genetics , Forests , Mycorrhizae/genetics , Panama , Phylogeny , Species Specificity , Tropical Climate
4.
Mycologia ; 113(4): 807-827, 2021.
Article in English | MEDLINE | ID: mdl-34043494

ABSTRACT

Species of Russula are ubiquitous members of ectomycorrhizal fungal communities in tropical ecosystems. However, an important part of the total tropical diversity of this genus and its biogeographic patterns is unknown due to the lack of studies on Russula in tropical ecosystems. We combined molecular, morphological, ecological, and biogeographic data to elaborate concepts for two new subspecies of R. floriformis (subsection Substriatinae). Russula floriformis subsp. floriformis and R. floriformis subsp. symphoniae are described as new from montane forest dominated by Quercus and/or Oreomunnea (Fagales) from Colombia and Panama, respectively. Phylogenies were constructed using nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS), D1-D2 domains of nuc 28S rDNA (28S), and partial regions of the second largest subunit of RNA polymerase II (rpb2) and translation elongation factor 1-alpha (tef1). Similar environmental conditions, similar morphology, and an ITS sequence similarity higher than 99% with only three different positions indicate that these two subspecies are closely related. Detailed observations of microscopic structures and analyses of further DNA loci, however, revealed morphological and molecular characteristics that allow distinguishing the two subspecies of R. floriformis. Spatial distribution and phylogenetic proximity of the two Russula subspecies and their ectomycorrhizal hosts, i.e., species of Quercus, suggest that their diversification is a result of comigration, adaptation, and geographic isolation along the Isthmus of Panama during the Pliocene and Pleistocene.


Subject(s)
Ecosystem , Cluster Analysis , DNA, Fungal/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/genetics , Phylogeny , RNA, Ribosomal, 28S/genetics , RNA, Ribosomal, 5.8S , Sequence Analysis, DNA
5.
IMA Fungus ; 10: 14, 2019.
Article in English | MEDLINE | ID: mdl-32647618

ABSTRACT

The ectomycorrhizal genus Lactifluus is known to contain many species complexes, consisting of morphologically very similar species, which can be considered cryptic or pseudocryptic. In this paper, a thorough molecular study is performed of the clade around Lactifluus deceptivus (originally described by Peck from North America) or the deceptive milkcaps. Even though most collections were identified as L. deceptivus, the clade is shown to contain at least 15 species, distributed across Asia and America, indicating that the L. deceptivus clade represents a species complex. These species are morphologically very similar and are characterized by a tomentose pileus with thin-walled hyphae and a velvety stipe with thick-walled hyphae. An ITS1 sequence was obtained through Illumina sequencing for the lectotype of L. deceptivus, dating from 1885, revealing which clade represents the true L. deceptivus. In addition, it is shown that three other described species also belong to the L. deceptivus clade: L. arcuatus, L. caeruleitinctus and L. mordax, and molecularly confirmed that L. tomentoso-marginatus represents a synonym of L. deceptivus. Furthermore, two new Neotropical species are described: Lactifluus hallingii and L. domingensis.

SELECTION OF CITATIONS
SEARCH DETAIL
...