Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000559

ABSTRACT

This study establishes a fetal cannabinoid syndrome model to evaluate the effects of high doses of dronabinol (synthetic THC) during pregnancy and lactation on behavioral and brain changes in male and female progeny and their susceptibility to alcohol consumption. Female C57BL/6J mice received dronabinol (10 mg/kg/12 h, p.o.) from gestational day 5 to postnatal day 21. On the weaning day, the offspring were separated by sex, and on postnatal day 60, behavioral and neurobiological changes were analyzed. Mice exposed to dronabinol exhibited increased anxiogenic and depressive-like behaviors and cognitive impairment. These behaviors were associated with neurodevelopment-related gene and protein expression changes, establishing, for the first time, an association among behavioral changes, cognitive impairment, and neurobiological alterations. Exposure to dronabinol during pregnancy and lactation disrupted the reward system, leading to increased motivation to consume alcohol in the offspring. All these modifications exhibited sex-dependent patterns. These findings reveal the pronounced adverse effects on fetal neurodevelopment resulting from cannabis use during pregnancy and lactation and strongly suggest the need to prevent mothers who use cannabis in this period from the severe and permanent side effects on behavior and brain development that may occur in their children.


Subject(s)
Behavior, Animal , Brain , Dronabinol , Lactation , Mice, Inbred C57BL , Prenatal Exposure Delayed Effects , Animals , Female , Pregnancy , Mice , Brain/drug effects , Brain/metabolism , Male , Dronabinol/adverse effects , Behavior, Animal/drug effects
2.
Antioxidants (Basel) ; 13(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38929144

ABSTRACT

Oxidative stress and apoptosis cell death are critical secondary damage mechanisms that lead to losing neighboring healthy tissue after cerebral ischemia. This study aims to characterize the type of interaction between dapsone (DDS) and cannabidiol (CBD) and its cytoprotective effect in an in vitro model of oxygen and glucose deprivation for 6 h followed by 24 h of reoxygenation (OGD/R), using the SH-SY5Y cell line. For the combined concentrations, an isobolographic study was designed to determine the optimal concentration-response combinations. Cell viability was evaluated by measuring the lactate dehydrogenase (LDH) release and 3-[4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assays. Also, the reactive oxygen species (ROS) and reduced glutathione (GSH) levels were analyzed as oxidative stress markers. Finally, caspase-3 activity was evaluated as a marker cell death by apoptosis. The results showed a decrease in cell viability, an increase in oxidant stress, and the activity of caspase-3 by the effect of OGD/R. Meanwhile, both DDS and CBD demonstrated antioxidant, antiapoptotic, and cytoprotective effects in a concentration-response manner. The isobolographic study indicated that the concentration of 2.5 µM of DDS plus 0.05 µM of CBD presented a synergistic effect so that in treatment, cell death due to OGD/R decreased. The findings indicate that DDS-CBD combined treatment may be a helpful therapy in cerebral ischemia with reperfusion.

3.
Biomed Pharmacother ; 177: 117054, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38943991

ABSTRACT

Spinal opioids have mixed efficacy and their adverse effects force treatment cessation of postoperative pain. Consequently, there is an ongoing search for new therapeutic strategies. Here, we evaluated the analgesic efficacy of intrathecal UCM707, an anandamide reuptake inhibitor, and morphine combination. Firstly, we assessed the effects of morphine (1, 5 and 10 µg), UCM707 (75 µg) and its combination in the hot plate. Then, morphine + UCM707 at sub-effective doses was evaluated in a rat post-incisional pain model. In addition, µ-, CB1r-, CB2r- and TRPV1-antagonists were pre-administered before the combination. Activation of µ-opioid and CB1r, and Cnr1, Cnr2, Oprm1 and TRPV1 expressions were evaluated in the lumbar sacra and periaqueductal grey by [35 S]-GTPγS binding autoradiography and qPCR studies. In the hot plate, morphine (1 µg) and UCM707 (75 µg) induced a more robust analgesic effect than each drug alone. Morphine plus UCM707 did not modify µ-opioid nor CB1 receptor function in the PAG or LS. Cnr1 and TRPV1 expression increased in the lumbar sacra (LS). Morphine plus UCM707 significantly reduced post-incisional pain at 1 and 4 days after surgery. Cnr1, Cnr2 and TRPV1 expressions increased in the LS. Blockade of µ-opioid receptor reduced combination effects on days 1 and 4. CB1r- and CB2r-antagonism reduced morphine + UCM707 effects on days 1 and 4, respectively. CB1r and TRPV1-antagonism improved their antinociceptive effects on day 4. These results revealed a synergistic/additive analgesic effect of UCM707 and morphine combination controlling postincisional pain. CB1r, CB2r and TRPV1 contribute differently as central sensitization occurs.


Subject(s)
Arachidonic Acids , Endocannabinoids , Injections, Spinal , Morphine , Pain, Postoperative , Polyunsaturated Alkamides , Animals , Morphine/pharmacology , Morphine/administration & dosage , Male , Pain, Postoperative/drug therapy , Pain, Postoperative/metabolism , Endocannabinoids/metabolism , Rats , Arachidonic Acids/pharmacology , Arachidonic Acids/administration & dosage , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/administration & dosage , Drug Synergism , Analgesics/pharmacology , Analgesics/administration & dosage , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacology , Receptors, Opioid, mu/metabolism , TRPV Cation Channels/metabolism , Rats, Wistar , Drug Therapy, Combination , Rats, Sprague-Dawley
4.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892456

ABSTRACT

Postoperative pain (POP) is a challenging clinical phenomenon that affects the majority of surgical patients and demands effective management to mitigate adverse outcomes such as persistent pain. The primary goal of POP management is to alleviate suffering and facilitate a seamless return to normal function for the patient. Despite compelling evidence of its drawbacks, opioid analgesia remains the basis of POP treatment. Novel therapeutic approaches rely on multimodal analgesia, integrating different pharmacological strategies to optimize efficacy while minimizing adverse effects. The recognition of the imperative role of the endocannabinoid system in pain regulation has prompted the investigation of cannabinoid compounds as a new therapeutic avenue. Cannabinoids may serve as adjuvants, enhancing the analgesic effects of other drugs and potentially replacing or at least reducing the dependence on other long-term analgesics in pain management. This narrative review succinctly summarizes pertinent information on the molecular mechanisms, clinical therapeutic benefits, and considerations associated with the plausible use of various cannabinoid compounds in treating POP. According to the available evidence, cannabinoid compounds modulate specific molecular mechanisms intimately involved in POP. However, only two of the eleven clinical trials that evaluated the efficacy of different cannabinoid interventions showed positive results.


Subject(s)
Cannabinoids , Pain Management , Pain, Postoperative , Humans , Pain, Postoperative/drug therapy , Cannabinoids/therapeutic use , Cannabinoids/pharmacology , Pain Management/methods , Analgesia/methods , Animals , Analgesics/therapeutic use , Analgesics/pharmacology , Endocannabinoids/metabolism , Endocannabinoids/therapeutic use
5.
Neuropharmacology ; 247: 109850, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38295947

ABSTRACT

Adolescence is a critical period for brain maturation in which this organ undergoes critical plasticity mechanisms that increase its vulnerability to the effects of alcohol. Significantly, ethanol-induced disruption of hippocampal neurogenesis has been related to cognitive decline in adulthood. During adolescence, the maturation of perineuronal nets (PNNs), extracellular matrix structures highly affected by ethanol consumption, plays a fundamental role in neurogenesis and plasticity in the hippocampus. Receptor Protein Tyrosine Phosphatase (RPTP) ß/ζ is a critical anchor point for PNNs on the cell surface. Using the adolescent intermittent access to ethanol (IAE) model, we previously showed that MY10, a small-molecule inhibitor of RPTPß/ζ, reduces chronic ethanol consumption in adolescent male mice but not in females and prevents IAE-induced neurogenic loss in the male hippocampus. We have now tested if these effects of MY10 are related to sex-dependent modulatory actions on ethanol-induced effects in PNNs. Our findings suggest a complex interplay between alcohol exposure, neural structures, and sex-related differences in the modulation of PNNs and parvalbumin (PV)-positive cells in the hippocampus. In general, IAE increased the number of PV + cells in the female hippocampus and reduced PNNs intensity in different hippocampal regions, particularly in male mice. Notably, we found that pharmacological inhibition of RPTPß/ζ with MY10 regulates ethanol-induced alterations of PNNs intensity, which correlates with the protection of hippocampal neurogenesis from ethanol neurotoxic effects and may be related to the capacity of MY10 to increase the gene expression of key components of PNNs.


Subject(s)
Ethanol , Receptor-Like Protein Tyrosine Phosphatases, Class 5 , Mice , Male , Animals , Female , Ethanol/pharmacology , Ethanol/metabolism , Extracellular Matrix/metabolism , Hippocampus/metabolism , Alcohol Drinking
SELECTION OF CITATIONS
SEARCH DETAIL