Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biomedicines ; 12(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38927354

ABSTRACT

The SARS-CoV-2 virus has spread rapidly despite implementing strategies to reduce its transmission. The disease caused by this virus has been associated with a diverse range of symptoms, including common neurological manifestations such as dysgeusia, anosmia, and myalgias. Additionally, numerous cases of severe neurological complications associated with this disease have been reported, including encephalitis, stroke, seizures, and Guillain-Barré syndrome, among others. Given the high prevalence of neurological manifestations in this disease, the objective of this review is to analyze the mechanisms by which this virus can affect the nervous system, from its direct invasion to aberrant activation of the immune system and other mechanisms involved in the symptoms, including neuropsychiatric manifestations, to gain a better understanding of the disease and thus facilitate the search for effective therapeutic strategies.

2.
Biomedicines ; 12(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38397885

ABSTRACT

The novel disease produced by SARS-CoV-2 mainly harms the respiratory tract, but it has shown the capacity to affect multiple organs. Epidemiologic evidence supports the relationship between Coronavirus Disease 2019 (COVID-19) and pancreatic and hepatic injury development, identified by alterations in these organ function markers. In this regard, it is important to ascertain how the current prevalence of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) might affect COVID-19 evolution and complications. Although it is not clear how SARS-CoV-2 affects both the pancreas and the liver, a multiplicity of potential pathophysiological mechanisms seem to be implicated; among them, a direct viral-induced injury to the organ involving liver and pancreas ACE2 expression. Additionally, immune system dysregulation, coagulopathies, and drugs used to treat the disease could be key for developing complications associated with the patient's clinical decline. This review aims to provide an overview of the available epidemiologic evidence regarding developing liver and pancreatic alterations in patients with COVID-19, as well as the possible role that NAFLD/NASH might play in the pathophysiological mechanisms underlying some of the complications associated with COVID-19. This review employed a comprehensive search on PubMed using relevant keywords and filters. From the initial 126 articles, those aligning with the research target were selected and evaluated for their methodologies, findings, and conclusions. It sheds light on the potential pathophysiological mechanisms underlying this relationship. As a result, it emphasises the importance of monitoring pancreatic and hepatic function in individuals affected by COVID-19.

3.
J Pers Med ; 12(8)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36013231

ABSTRACT

Obesity and its comorbidities are humans' most prevalent cardio-metabolic diseases worldwide. Recent evidence has shown that chronic low-grade inflammation is a common feature in all highly prevalent chronic degenerative diseases. In this sense, the gut microbiota is a complete ecosystem involved in different processes like vitamin synthesis, metabolism regulation, and both appetite and immune system control. Thus, dysbiosis has been recognised as one of the many factors associated with obesity due to a predominance of Firmicutes, a decrease in Bifidobacterium in the gut, and a consequent short-chain fatty acids (SCFA) synthesis reduction leading to a reduction in incretins action and intestinal permeability increase. In this context, bacteria, bacterial endotoxins, and toxic bacterial by-products are translocated to the bloodstream, leading to systemic inflammation. This review focuses on gut microbiota composition and its role in obesity, as well as probiotics and prebiotics benefits in obesity.

4.
Int J Mol Sci ; 22(19)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34638711

ABSTRACT

Chronic pain (CP) is a severe clinical entity with devastating physical and emotional consequences for patients, which can occur in a myriad of diseases. Often, conventional treatment approaches appear to be insufficient for its management. Moreover, considering the adverse effects of traditional analgesic treatments, specialized pro-resolving lipid mediators (SPMs) have emerged as a promising alternative for CP. These include various bioactive molecules such as resolvins, maresins, and protectins, derived from ω-3 polyunsaturated fatty acids (PUFAs); and lipoxins, produced from ω-6 PUFAs. Indeed, SPMs have been demonstrated to play a central role in the regulation and resolution of the inflammation associated with CP. Furthermore, these molecules can modulate neuroinflammation and thus inhibit central and peripheral sensitizations, as well as long-term potentiation, via immunomodulation and regulation of nociceptor activity and neuronal pathways. In this context, preclinical and clinical studies have evidenced that the use of SPMs is beneficial in CP-related disorders, including rheumatic diseases, migraine, neuropathies, and others. This review integrates current preclinical and clinical knowledge on the role of SPMs as a potential therapeutic tool for the management of patients with CP.


Subject(s)
Chronic Pain/metabolism , Chronic Pain/therapy , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Inflammation Mediators/metabolism , Pain Management , Animals , Humans
5.
Int J Mol Sci ; 22(17)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34502413

ABSTRACT

Type 2 Diabetes Mellitus (T2DM) is one of the most prevalent chronic metabolic disorders, and insulin has been placed at the epicentre of its pathophysiological basis. However, the involvement of impaired alpha (α) cell function has been recognized as playing an essential role in several diseases, since hyperglucagonemia has been evidenced in both Type 1 and T2DM. This phenomenon has been attributed to intra-islet defects, like modifications in pancreatic α cell mass or dysfunction in glucagon's secretion. Emerging evidence has shown that chronic hyperglycaemia provokes changes in the Langerhans' islets cytoarchitecture, including α cell hyperplasia, pancreatic beta (ß) cell dedifferentiation into glucagon-positive producing cells, and loss of paracrine and endocrine regulation due to ß cell mass loss. Other abnormalities like α cell insulin resistance, sensor machinery dysfunction, or paradoxical ATP-sensitive potassium channels (KATP) opening have also been linked to glucagon hypersecretion. Recent clinical trials in phases 1 or 2 have shown new molecules with glucagon-antagonist properties with considerable effectiveness and acceptable safety profiles. Glucagon-like peptide-1 (GLP-1) agonists and Dipeptidyl Peptidase-4 inhibitors (DPP-4 inhibitors) have been shown to decrease glucagon secretion in T2DM, and their possible therapeutic role in T1DM means they are attractive as an insulin-adjuvant therapy.


Subject(s)
Autocrine Communication , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucagon-Secreting Cells/metabolism , Insulin-Secreting Cells/metabolism , Paracrine Communication , Animals , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Glucagon/metabolism , Glucagon-Like Peptide 1/antagonists & inhibitors , Glucagon-Like Peptide 1/metabolism , Glucagon-Secreting Cells/pathology , Humans , Hypoglycemic Agents/therapeutic use , Insulin-Secreting Cells/pathology
6.
Int J Mol Sci ; 22(9)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062716

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disorder, affecting around 25% of the population worldwide. It is a complex disease spectrum, closely linked with other conditions such as obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome, which may increase liver-related mortality. In light of this, numerous efforts have been carried out in recent years in order to clarify its pathogenesis and create new prevention strategies. Currently, the essential role of environmental pollutants in NAFLD development is recognized. Particularly, endocrine-disrupting chemicals (EDCs) have a notable influence. EDCs can be classified as natural (phytoestrogens, genistein, and coumestrol) or synthetic, and the latter ones can be further subdivided into industrial (dioxins, polychlorinated biphenyls, and alkylphenols), agricultural (pesticides, insecticides, herbicides, and fungicides), residential (phthalates, polybrominated biphenyls, and bisphenol A), and pharmaceutical (parabens). Several experimental models have proposed a mechanism involving this group of substances with the disruption of hepatic metabolism, which promotes NAFLD. These include an imbalance between lipid influx/efflux in the liver, mitochondrial dysfunction, liver inflammation, and epigenetic reprogramming. It can be concluded that exposure to EDCs might play a crucial role in NAFLD initiation and evolution. However, further investigations supporting these effects in humans are required.


Subject(s)
Endocrine Disruptors/toxicity , Environmental Pollutants/toxicity , Lipid Metabolism/drug effects , Non-alcoholic Fatty Liver Disease/metabolism , Benzhydryl Compounds/toxicity , Coumestrol/toxicity , Dioxins/toxicity , Endocrine Disruptors/classification , Genistein/toxicity , Humans , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/pathology , Phenols/toxicity , Phytoestrogens/toxicity , Polychlorinated Biphenyls/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...