Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Conserv Physiol ; 11(1): coad067, 2023.
Article in English | MEDLINE | ID: mdl-37663927

ABSTRACT

Anthropogenic impacts can lead to increased temperatures in freshwater environments through thermal effluent and climate change. Thermal preference of aquatic organisms can be modulated by abiotic and biotic factors including environmental temperature. Whether increased temperature during embryogenesis can lead to long-term alterations in thermal preference has not been explicitly tested in native freshwater species. Lake (Coregonus clupeaformis) and round (Prosopium cylindraceum) whitefish were incubated at natural and elevated temperatures until hatching, following which, all groups were moved to common garden conditions (15°C) during the post-hatching stage. Temperature preference was determined at 8 months (Lake whitefish only) and 12 months of age (both species) using a shuttle box system. Round whitefish preferred a cooler temperature when incubated at 2 and 6°C compared with 0.5°C. Lake whitefish had similar temperature preferences regardless of age, weight and incubation temperature. These results reveal that temperature preference in freshwater fish can be programmed during early development, and that round whitefish may be more sensitive to incubation temperature. This study highlights the effects that small increases in temperature caused by anthropogenic impacts may have on cold-adapted freshwater fish.

2.
J Therm Biol ; 104: 103185, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35180964

ABSTRACT

Long-term temperature shifts associated with seasonal variability are common in temperate regions. However, these natural shifts could place significant strain on thermal stress responses of fishes when combined with mean increases in water temperatures predicted by climate change models. We examined the relationship between thermal acclimation, basal expression of heat shock protein (hsp) genes and the activation of the heat shock response (HSR) in lake whitefish (LWF; Coregonus clupeaformis), a cold water species of cultural and commercial significance. Juveniles were acclimated to either 6, 12, or 18°C water for several months prior to the quantification of hsp mRNA levels in the presence or absence of acute heat shock (HS). Acclimation to 18°C increased basal mRNA levels of hsp70 and hsp47, but not hsc70 or hsp90ß in gill, liver and white muscle, while 6°C acclimation had no effect on basal hsp transcription. Fish in all acclimation groups were capable of eliciting a robust HSR following acute HS, as indicated by the upregulation of hsp70 and hsp47. An increase of only 2°C above the 18°C acclimation temperature was required to trigger these transcriptional changes, suggesting that the HSR may be frequently initiated in LWF populations living at mildly elevated temperatures. Collectively, these expression profiles show that environmental temperature influences both basal hsp levels and the HSR in LWF, and indicate that these fish may have a greater physiological and ecological susceptibility to elevated temperatures than to cooler temperatures.


Subject(s)
HSP47 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/genetics , Heat-Shock Response/genetics , Salmonidae/genetics , Acclimatization , Animals , Climate Change , Gene Expression , Lakes , RNA, Messenger/genetics , Temperature , Up-Regulation/genetics
3.
J Therm Biol ; 100: 103036, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34503783

ABSTRACT

We examined the impact of repeated thermal stress on the heat shock response (HSR) of thermally sensitive lake whitefish (Coregonus clupeaformis) embryos. Our treatments were designed to mimic temperature fluctuations in the vicinity of industrial thermal effluents. Embryos were either maintained at control temperatures (3 oC) or exposed to a repeated thermal stress (TS) of 3 or 6 oC above control temperature every 3 or 6 days throughout embryonic development. At 82 days post-fertilisation, repeated TS treatments were stopped and embryos received either a high level TS of 12, 15, or 18 oC above ambient temperature for 1 or 4 h, or no additional TS. These treatments were carried out after a 6 h recovery from the last repeated TS. Embryos in the no repeated TS group responded, as expected, with increases in hsp70 mRNA in response to 12, 15 and 18 oC high-level TS. However, exposure to repeated TS of 3 or 6 °C every 6 days also resulted in a significant upregulation of hsp70 mRNA relative to the controls. Importantly, these repeated TS events and the associated elevations in hsp70 attenuated the upregulation of hsp70 in response to a 1 h, high-level TS of 12 oC above ambient, but not to either longer (4 h) or higher (15 or 18 oC) TS events. Conversely, hsp90α mRNA levels were not consistently elevated in the no repeated TS groups exposed to high-level TS. In some instances, hsp90α levels appeared to decrease in embryos exposed to repeated TS followed by a high-level TS. The observed attenuation of the HSR in lake whitefish embryos demonstrates that embryos of this species have plasticity in their HSR and repeated TS may protect against high-level TS, but the response differs based on repeated TS treatment, high-level TS temperature and duration, and the gene of interest.


Subject(s)
Heat-Shock Response , Salmonidae/metabolism , Animals , Fish Proteins/genetics , Fish Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Salmonidae/embryology
4.
Gen Comp Endocrinol ; 295: 113524, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32526331

ABSTRACT

Early life stages are sensitive to environmental insults and changes during critical developmental periods; this can often result in altered adult behaviour and physiology. Examining the development of the hypothalamus-pituitary-interrenal (HPI) axis and its responsiveness, or lack thereof, during development are important for understanding the short- and long-term impacts of stressors on embryonic and larval fish. We examined the ontogeny of the HPI axis in embryonic (21, 38, 63, 83 and 103 days post-fertilisation (dpf)) and larval (1, 2, 3 and 4 weeks post-hatch (wph)) lake whitefish (Coregonus clupeaformis) by quantifying changes in mRNA levels of several genes associated with HPI axis functioning and whole animal cortisol levels throughout development and in response to a severe or mild hypoxic stress. Cortisol, and crh, crhbp1, pomc and star transcripts were detected from the earliest embryonic age studied. Cortisol levels in control embryos decreased between 21 and 63 dpf, suggesting the utilisation of maternal cortisol deposits. However, by 83 dpf (70% developed) endogenous de novo synthesis had generated a 4.5-fold increase in whole embryo cortisol. Importantly, we provide novel data showing that the HPI axis can be activated even earlier. Whole body cortisol increased in eyed lake whitefish embryos (38 dpf; ~32% developed) in response to hypoxia stress. Coincident with this hypoxia-induced increase in cortisol in 38 dpf embryos were corresponding increases in crh, crhbp1, pomc and star transcript levels. Beyond 38 dpf, the HPI axis in lake whitefish embryos was hyporesponsive to hypoxia stress at all embryonic ages examined (63, 83 and 103 dpf; 54, 72 and 85% developed, respectively). Post-hatch, larvae responded to hypoxia with an increase in cortisol levels and HPI axis genes at 1 wph, but this response was lost and larvae appeared hyporesponsive at subsequent ages (2, 3 and 4 wph). Collectively our work demonstrates that during fish embryogenesis and the larval stage there are windows where the HPI axis is responsive and windows where it is truly hyporesponsive; both could be beneficial in ensuring undisrupted development particularly in the face of increasing environmental changes.


Subject(s)
Hypothalamus/embryology , Hypoxia/embryology , Lakes , Pituitary Gland/embryology , Salmonidae/embryology , Animals , Embryo, Nonmammalian/metabolism , Embryonic Development , Hydrocortisone/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Salmonidae/genetics
5.
J Fish Biol ; 97(1): 113-120, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32222964

ABSTRACT

A laboratory flume was constructed to examine substrate effects on aquatic development. The flume was designed as a once-through system with a submerged cobble-filled corebox. Lake whitefish (Coregonus clupeaformis) embryos and temperature probes were deployed at multiple sites within the cobble and in the open water channel. Embryos were incubated in the flume for two different experimental periods: one to examine substrate impacts during natural lake cooling (37 days: 5 December 2016 to 10 January 2017) and the second to investigate substrate effects while administering a twice weekly 1 h heat shock (51 days: 11 January to 2 March 2017). During incubation, no significant difference was found in the average temperature between locations; however, temperatures were more stable within the cobble. Following both incubation periods, embryos retrieved from the cobble were significantly smaller in both dry mass and body length by up to 20%. These results demonstrate differences between embryos submerged in a cobble substrate and in the open water column, highlighting the need to consider the physical influences from the incubation environment when assessing development effects as part of any scientific study or environmental assessment.


Subject(s)
Embryo, Nonmammalian/physiology , Embryonic Development/physiology , Salmonidae/embryology , Animals , Environment , Salmonidae/physiology , Temperature
6.
PLoS One ; 15(1): e0226608, 2020.
Article in English | MEDLINE | ID: mdl-31978053

ABSTRACT

Reduced representation (RRL) sequencing approaches (e.g., RADSeq, genotyping by sequencing) require decisions about how much to invest in genome coverage and sequencing depth, as well as choices of values for adjustable bioinformatics parameters. To empirically explore the importance of these "simple" methodological decisions, we generated two independent sequencing libraries for the same 142 individual lake whitefish (Coregonus clupeaformis) using a nextRAD RRL approach: (1) a larger number of loci at low sequencing depth based on a 9mer (library A); and (2) fewer loci at higher sequencing depth based on a 10mer (library B). The fish were selected from populations with different levels of expected genetic subdivision. Each library was analyzed using the STACKS pipeline followed by three types of population structure assessment (FST, DAPC and ADMIXTURE) with iterative increases in the stringency of sequencing depth and missing data requirements, as well as more specific a priori population maps. Library B was always able to resolve strong population differentiation in all three types of assessment regardless of the selected parameters, largely due to retention of more loci in analyses. In contrast, library A produced more variable results; increasing the minimum sequencing depth threshold (-m) resulted in a reduced number of retained loci, and therefore lost resolution at high -m values for FST and ADMIXTURE, but not DAPC. When detecting fine population differentiation, the population map influenced the number of loci and missing data, which generated artefacts in all downstream analyses tested. Similarly, when examining fine scale population subdivision, library B was robust to changing parameters but library A lost resolution depending on the parameter set. We used library B to examine actual subdivision in our study populations. All three types of analysis found complete subdivision among populations in Lake Huron, ON and Dore Lake, SK, Canada using 10,640 SNP loci. Weak population subdivision was detected in Lake Huron with fish from sites in the north-west, Search Bay, North Point and Hammond Bay, showing slight differentiation. Overall, we show that apparently simple decisions about library construction and bioinformatics parameters can have important impacts on the interpretation of population subdivision. Although potentially more costly on a per-locus basis, early investment in striking a balance between the number of loci and sequencing effort is well worth the reduced genomic coverage for population genetics studies. More conservative stringency settings on STACKS parameters lead to a final dataset that was more consistent and robust when examining both weak and strong population differentiation. Overall, we recommend that researchers approach "simple" methodological decisions with caution, especially when working on non-model species for the first time.


Subject(s)
Computational Biology/methods , Gene Library , Genetic Variation , Genetics, Population , Genome , Salmonidae/genetics , Sequence Analysis, DNA/methods , Animals , Genetic Speciation , Salmonidae/classification
7.
Gen Comp Endocrinol ; 275: 51-64, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30721659

ABSTRACT

Temperature has unequivocal effects on several aspects of fish physiology, but the full extent of its interaction with key endocrine signaling systems to influence metabolic function remains unknown. The aim of the current study was to assess the individual and combined effects of elevated temperature and hyperthyroidism on hepatic metabolism in juvenile lake whitefish by quantifying mRNA abundance and activity of key metabolic enzymes. Fish were exposed to 13 (control), 17 or 21 °C for 0, 4, 8 or 24 days in the presence or absence of low-T4 (1 µg × g body weight-1) or high-T4 (10 µg × g body weight-1) treatment. Our results demonstrate moderate sensitivity to elevated temperature in this species, characterized by short-term changes in mRNA abundance of several metabolic enzymes and long-term declines in citrate synthase (CS) and cytochrome c oxidase (COX) activities. T4-induced hyperthyroidism also had several short-term effects on mRNA abundance of metabolic transcripts, including depressions in acetyl-coA carboxylase ß (accß) and carnitine palmitoyltransferase 1ß (cpt1ß), and stabilization of cs mRNA levels; however, these effects were primarily limited to elevated temperature groups, indicating temperature-dependent effects of exogenous T4 treatment in this species. In contrast, maximal CS and COX activities were not altered by hyperthyroidism at any temperature. Collectively, our data suggest that temperature has the potential to manipulate thyroid hormone physiology in juvenile lake whitefish and, under warm-conditions, hyperthyroidism may suppress certain elements of the ß-oxidation pathway without substantial impacts on overall cellular oxidative capacity.


Subject(s)
Energy Metabolism , Enzymes/genetics , Enzymes/metabolism , Lipid Metabolism , Salmonidae , Temperature , Thyroxine/pharmacology , Animals , Citrate (si)-Synthase/genetics , Citrate (si)-Synthase/metabolism , Embryo, Nonmammalian , Energy Metabolism/drug effects , Energy Metabolism/genetics , Enzyme Activation/drug effects , Female , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Hot Temperature , Lakes , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Male , Oxidation-Reduction/drug effects , Oxidative Phosphorylation/drug effects , Salmonidae/embryology , Salmonidae/genetics , Salmonidae/metabolism
8.
Article in English | MEDLINE | ID: mdl-30659950

ABSTRACT

Lake whitefish (Coregonus clupeaformis) embryos and larvae were exposed to hypoxia at different developmental ages to determine when the cellular response to hypoxia could be initiated. mRNA levels of hypoxia-inducible factor 1α (hif-1α), hsp70, and several HIF-1 target genes were quantified in embryos at 21, 38, 63, 83- and 103-days post fertilisation (dpf) and in larvae at 1, 2, 3- and 4-weeks post hatch (wph) following a 6-hour hypoxia exposure. hsp70 mRNA levels were increased in response to hypoxia at all embryonic ages. By comparison, the first observed change in hif-1α mRNA in response to hypoxia was at 38 dpf, where it was down-regulated from high basal levels, with this response persisting through to 83 dpf. Interestingly, this decrease in hif-1α mRNA coincided with increases in the mRNA levels of the HIF-1 target genes: vegfa (vascular endothelial growth factor A), igfbp1 (insulin-like growth factor binding protein 1), ldha (lactate dehydrogenase a), gapdh (glyceraldehyde-3-phosphate dehydrogenase) and epo (erythropoietin) at select ages. Collectively, this suggests a possible HIF-1-mediated response to hypoxia despite a decrease in hif-1α mRNA. Coinciding with a decrease in basal levels, increases in hif-1α were measured in response to hypoxia at 103 dpf and in larval fish at 1, 2 and 3 wph but there were no consistent increases in HIF-1 target genes at these ages. Overall, our findings indicate that lake whitefish can mount a response to hypoxia early in embryogenesis which may mitigate some of the damaging effects of exposure to low oxygen levels at these critical life history stages.


Subject(s)
Fish Proteins/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia/metabolism , Larva/metabolism , RNA, Messenger/metabolism , Salmonidae/embryology , Salmonidae/growth & development , Animals , HSP70 Heat-Shock Proteins/genetics , Oxygen/metabolism , Salmonidae/genetics
9.
Article in English | MEDLINE | ID: mdl-30114471

ABSTRACT

Lake whitefish (Coregonus clupeaformis) utilize overwintering embryonic development (up to 180 days), and such stenothermic, cold-water embryos may be particularly susceptible to thermal shifts. We incubated whitefish embryos in temperature treatments that were constant temperature (2.0 ±â€¯0.1 °C, 5.0 ±â€¯0.1 °C, and 8.0 ±â€¯0.1 °C; mean ±â€¯SD) or variable temperature (VT, mean = 5.0 ±â€¯0.3 °C). In the VT, a daily 2 °C temperature change followed a continuous pattern throughout development: 2-4-6-8-6-4-2 °C. Hatchling survival proportion from fertilization to hatch was significantly impacted by incubation temperature (P < 0.001): 2 °C (0.88 ±â€¯0.01) and 5 °C (0.91 ±â€¯0.01) showed higher survival than both the VT (0.83 ±â€¯0.02) and 8 °C groups (0.15 ±â€¯0.06), which were statistically distinct from each other. Time to hatch (dpf) was significantly different across all treatments (P < 0.001): 8 °C (68 ±â€¯2 dpf), VT (111 ±â€¯4 dpf), 5 °C (116 ±â€¯4 dpf), 2 °C (170 ±â€¯3 dpf). Likewise, hatchling yolk-free dry mass (mg) and total body length (mm) were significantly different across all treatments (P < 0.001): 8 °C (0.66 ±â€¯0.08 mg; 11.1 ±â€¯0.08 mm), VT (0.97 ±â€¯0.06 mg; 11.7 ±â€¯0.05 mm), 5 °C (1.07 ±â€¯0.03 mg; 12.0 ±â€¯0.02 mm), 2 °C (1.36 ±â€¯0.04 mg; 12.8 ±â€¯0.05 mm). Oxygen consumption rate (V̇o2) was significantly affected by the interaction between treatment and measurement temperature (P < 0.001). Hatchling VT whitefish showed mean V̇o2 that was higher compared to the 2 °C group measured at 2 °C, and lower compared to the 2 °C and 5 °C group measured at 8 °C. This study demonstrates that the VT incubation treatment produced fewer (increased mortality), smaller embryos that hatched earlier than 2 °C and 5 °C embryos. The plasticity of V̇o2 for this stenothermic-incubating fish species under variable incubation conditions reveals a metabolic cost to cycling thermal incubation conditions.


Subject(s)
Salmonidae/physiology , Animals , Embryo, Nonmammalian/physiology , Embryonic Development , Oxygen Consumption/physiology , Salmonidae/embryology , Salmonidae/growth & development , Salmonidae/metabolism
10.
Environ Toxicol Chem ; 37(10): 2593-2608, 2018 10.
Article in English | MEDLINE | ID: mdl-29963715

ABSTRACT

During incubation, round whitefish embryos may experience fluctuating or elevated temperatures from natural (e.g., seasonal temperature changes) and/or anthropogenic sources. Anthropogenic sources like once-through cooling discharges from nuclear power plants can also expose embryos to chemicals (e.g., morpholine) and/or radiation. To examine the effects of these potential stressors on embryogenesis, round whitefish were incubated under fluctuating or constant temperatures, with morpholine or 137 Cs gamma rays. We report the percentage of prehatch and posthatch mortality, developmental rate, hatch dynamics, and morphometrics at 4 development stages. Embryos reared at constant temperatures had delayed developmental stage onset and median hatch, higher mortality at constant 8 °C, and lower mortality at ≤5 °C, compared with embryos reared under seasonal temperature regimes. Embryos incubated with ≥500 mg L-1 morpholine (>200× regulatory limits) had advanced hatch, reduced body size, and increased prehatch (100% at 1000 mg L-1 ) and posthatch (≈95% at 500 mg L-1 ) mortality compared with controls. Relative to controls, embryos irradiated with ≥0.16 mGy/d had larger body mass early in development, and all irradiated embryos had decreased posthatch mortality; the lowest dose was >300× discharge limits. Our study suggests that fluctuating or elevated temperatures and high-dose morpholine can alter development rate, hatch dynamics, and growth, and/or increase mortality compared with embryos reared at constant temperatures of ≤5 °C; conversely, low-dose irradiation had transient developmental effects but may benefit early posthatch survival. Environ Toxicol Chem 2018;37:2593-2608. © 2018 SETAC.


Subject(s)
Embryonic Development/drug effects , Embryonic Development/radiation effects , Gamma Rays , Morpholines/toxicity , Salmonidae/embryology , Temperature , Animals , Body Size , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/radiation effects , Hydrogen-Ion Concentration , Larva/drug effects , Salmonidae/anatomy & histology , Seasons , Time Factors
11.
Toxicol In Vitro ; 47: 38-47, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29111319

ABSTRACT

Discharges from industrial cooling water systems can include low levels of morpholine (a chemical pH regulator and corrosion inhibitor), as well as transiently higher temperature effluent water which present a potential source of environmental impact to aquatic biota. The effects of environmental levels of morpholine or heat shock (HS) treatment alone and in combination with a challenge high-dose of 137Cs ionizing radiation were studied using the cytokinesis block micronucleus assay in a rainbow trout cell line (RTG-2). Morpholine treatment of 10 or 100mgL-1 alone produced no significant effects, and no interaction was observed in combination with 7.75Gy radiation. A 9°C magnitude HS treatment alone significantly increased micronuclei formation. A synergistic response was observed when 9°C HS was combined with 7.75Gy radiation, with 15% more cells containing 3 or more micronuclei than the sum of each individual stressor. A synergistic increase in the average number of micronuclei was observed when morpholine and a 9°C HS were co-treated. These results indicate that morpholine at environmentally-relevant levels does not impact micronuclei formation or cell cycle progression however 9°C HS may be of potential concern both alone and in combination with other stressor treatments.


Subject(s)
Gonads/drug effects , Gonads/radiation effects , Micronuclei, Chromosome-Defective/drug effects , Micronuclei, Chromosome-Defective/radiation effects , Morpholines/toxicity , Oncorhynchus mykiss , Water Pollution/adverse effects , Animals , Cell Line, Transformed , Cesium Radioisotopes , Cytochalasin B/pharmacology , Cytokinesis/drug effects , Cytokinesis/radiation effects , Dose-Response Relationship, Radiation , Female , Gonads/physiology , Heat-Shock Response , Hydrogen-Ion Concentration , Indicators and Reagents/pharmacology , Kinetics , Male , Radiation, Ionizing , Water Pollutants, Chemical/toxicity , Water Pollution, Radioactive/adverse effects
12.
J Therm Biol ; 69: 294-301, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29037397

ABSTRACT

Lake whitefish (Coregonus clupeaformis) embryos were exposed to thermal stress (TS) at different developmental stages to determine when the heat shock response (HSR) can be initiated and if it is altered by exposure to repeated TS. First, embryos were subject to one of three different TS temperatures (6, 9, or 12°C above control) at 4 points in development (21, 38, 60 and 70 days post-fertilisation (dpf)) for 2h followed by a 2h recovery to understand the ontogeny of the HSR. A second experiment explored the effects of repeated TS on the HSR in embryos from 15 to 75 dpf. Embryos were subjected to one of two TS regimes; +6°C TS for 1h every 6 days or +9°C TS for 1h every 6 days. Following a 2h recovery, a subset of embryos was sampled. Our results show that embryos could initiate a HSR via upregulation of heat shock protein 70 (hsp70) mRNA at all developmental ages studied, but that this response varied with age and was only observed with a TS of +9 or +12°C. In comparison, when embryos received multiple TS treatments, hsp70 was not induced in response to the 1h TS and 2h recovery, and a downregulation was observed at 39 dpf. Downregulation of hsp47 and hsp90α mRNA was also observed in early age embryos. Collectively, these data suggest that embryos are capable of initiating a HSR at early age and throughout embryogenesis, but that repeated TS can alter the HSR, and may result in either reduced responsiveness or a downregulation of inducible hsps. Our findings warrant further investigation into both the short- and long-term effects of repeated TS on lake whitefish development.


Subject(s)
Heat-Shock Response , Salmonidae/embryology , Animals , Down-Regulation , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/physiology , Fish Proteins/genetics , Gene Expression Regulation, Developmental , HSP47 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/genetics , Hot Temperature , RNA, Messenger/genetics , Salmonidae/physiology , Up-Regulation
13.
Article in English | MEDLINE | ID: mdl-28855119

ABSTRACT

Fluctuating incubation temperatures may have significant effects on fish embryogenesis; yet most laboratory-based studies use constant temperatures. For species that experience large, natural seasonal temperature changes during embryogenesis, such as lake whitefish (Coregonus clupeaformis), seasonal temperature regimes are likely optimal for development. Anthropogenic activities can increase average and/or variability of natural incubation temperatures over large (e.g. through climate change) or smaller (e.g. thermal effluent discharge) geographic scales. To investigate this, we incubated lake whitefish embryos under constant (2, 5, or 8°C) and fluctuating temperature regimes. Fluctuating temperature regimes had a base temperature of 2°C with: 1) seasonal temperature changes that modeled natural declines/inclines; 2) tri-weekly +3°C, 1h temperature spikes; or 3) both seasonal temperature changes and temperature spikes. We compared mortality to hatch, morphometrics, and heart rate at three developmental stages. Mortality rate was similar for embryos incubated at constant 2°C, constant 5°C, or with seasonal temperatures, but was significantly greater at constant 8°C. Embryos incubated constantly at >2°C had reduced body growth and yolk consumption compared to embryos incubated with seasonal temperature changes. When measured at the common base temperature of 2°C, embryos incubated at constant 2°C had lower heart rates than embryos incubated with both seasonal temperature changes and temperature spikes. Our study suggests that incubating lake whitefish embryos with constant temperatures may significantly alter development, growth, and heart rate compared to incubating with seasonal temperature changes, emphasizing the need to include seasonal temperature changes in laboratory-based studies.


Subject(s)
Embryo, Nonmammalian/physiology , Embryonic Development , Salmonidae/embryology , Stress, Physiological , Thermotolerance , Animals , Aquaculture , Fertilization in Vitro/veterinary , Great Lakes Region , Heart Rate , Hot Temperature/adverse effects , Lakes , Ontario , Random Allocation , Salmonidae/growth & development , Salmonidae/physiology , Seasons , Survival Analysis , Yolk Sac/embryology , Yolk Sac/physiology
14.
Radiat Res ; 188(4.2): 486-494, 2017 10.
Article in English | MEDLINE | ID: mdl-28877005

ABSTRACT

Beneficial protective effects may result from an adaptive respose to low dose radiation exposure. However, such benefits must be accompanied by some form of cost because the responsible biological mechanisms are not normally maintained in an upregulated state. It has been suggested that stimulation of adaptive response mechanisms could be metabolically costly, or that the adaptive response could come at a sacrifice to other physiological processes. We exposed developing lake whitefish embryos to a fractionated regime of gamma radiation (662 keV; 0.3 Gy min-1) to determine whether radiation-stimulated growth was accompanied by a trade-off in metabolic efficiency. Developing embryos were exposed at the eyed stage to different radiation doses delivered in four fractions, ranging from 15 mGy to 8 Gy per fraction, with a 14 day separation between dose fractions. Dry weight and standard length measurements were taken 2-5 weeks after delivery of the final radiation exposure and yolk conversion efficiency was estimated by comparing the unpreserved dry weight of the yolk to the unpreserved yolk-free dry weight of the embryos and normalizing for size-related differences in somatic maintenance. Our results show that the irradiated embryos were 8-10% heavier than the controls but yolk conversion efficiency was slightly improved. This finding demonstrates that stimulated growth in developing lake whitefish embryos is not "paid for" by a trade-off in the efficiency of yolk conversion.


Subject(s)
Embryo, Nonmammalian/radiation effects , Radiobiology , Salmonidae/embryology , Salmonidae/metabolism , Animals , Dose-Response Relationship, Radiation , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Gamma Rays
15.
Radiat Res ; 188(4.2): 475-485, 2017 10.
Article in English | MEDLINE | ID: mdl-28737450

ABSTRACT

Ionizing radiation is known to effect development during early life stages. Lake whitefish (Coregonus clupeaformis) represent a unique model organism for examining such effects. The purpose of this study was to examine how ionizing radiation affects development in lake whitefish embryos and to investigate the presence of an adaptive response induced by heat shock. Acute exposure to 137Cs gamma rays was administered at five time points corresponding to major developmental stages, with doses ranging from 0.008 to 15.5 Gy. Chronic gamma-ray exposures were delivered throughout embryogenesis within a custom-built irradiator at dose rates between 0.06 and 4.4 mGy/day. Additionally, embryos were given a heat shock of 3, 6 or 9°C prior to a single acute exposure. Radiation effects were assessed based on survival, development rate, morphometric measurements and growth efficiency. Embryos showed high resistance to acute exposures with an LD50/hatch of 5.0 ± 0.7 Gy immediately after fertilization, increasing to 14.2 ± 0.1 Gy later in development. Chronic irradiation at all dose rates stimulated growth, with treated embryos up to 60% larger in body mass during development compared to unirradiated controls. Chronic irradiation also accelerated the time-to-hatch. A heat shock administered 6 h prior to irradiation reduced mortality by up to 25%. Overall, low-dose chronic irradiation caused growth stimulation in developing lake whitefish embryos and acute radiation mortality was reduced by a heat-shock-induced adaptive response.


Subject(s)
Adaptation, Physiological/radiation effects , Embryo, Nonmammalian/physiology , Embryo, Nonmammalian/radiation effects , Heat-Shock Response/radiation effects , Salmonidae/embryology , Salmonidae/physiology , Animals , Body Size/radiation effects , Dose-Response Relationship, Radiation , Embryo, Nonmammalian/embryology , Salmonidae/growth & development
16.
Mol Cell Endocrinol ; 459: 28-42, 2017 Dec 25.
Article in English | MEDLINE | ID: mdl-28630022

ABSTRACT

As one of the most basal living vertebrates, lampreys represent an excellent model system to study the evolution of thyroid hormone (TH) signaling. The lamprey hypothalamic-pituitary-thyroid and reproductive axes overlap functionally. Lampreys have 3 gonadotropin-releasing hormones and a single glycoprotein hormone from the hypothalamus and pituitary, respectively, that regulate both the reproductive and thyroid axes. TH synthesis in larval lampreys takes place in an endostyle that transforms into typical vertebrate thyroid tissue during metamorphosis; both the endostyle and follicular tissue have all the typical TH synthetic components found in other vertebrates. Furthermore, lampreys also have the vertebrate suite of peripheral regulators including TH distributor proteins (THDPs), deiodinases and TH receptors (TRs). Although at the molecular level the components of the lamprey thyroid system are ancestral to other vertebrates, their functions have been largely conserved. TH signaling as it relates to lamprey metamorphosis represents a particularly interesting phenomenon. Unlike other metamorphosing vertebrates, lamprey THs increase throughout the larval period, peak prior to metamorphosis and decline rapidly at the onset of metamorphosis; patterns of deiodinase activity are consistent with these increases and declines. Moreover, goitrogens (which suppress TH levels) initiate precocious metamorphosis, and exogenous TH treatment blocks goitrogen-induced metamorphosis and disrupts natural metamorphosis. Despite this clear physiological difference, TH action via TRs is consistent with higher vertebrates. Based on observations that TRs are upregulated in a tissue-specific fashion during morphogenesis and the finding that lamprey TRs upregulate genes via THs in a fashion similar to higher vertebrates, we propose the following hypothesis for further testing. THs have a dual role in lampreys where high TH levels promote larval feeding and growth and then at the onset of metamorphosis TH levels decrease rapidly; at this time the relatively low TH levels function via TRs in a fashion similar to that of other metamorphosing vertebrates.


Subject(s)
Lampreys/metabolism , Neurosecretory Systems/physiology , Receptors, Thyroid Hormone/metabolism , Reproduction/physiology , Signal Transduction , Thyroid Hormones/metabolism , Animals , Feeding Behavior/physiology , Gene Expression Regulation, Developmental , Hypothalamus/physiology , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Lampreys/genetics , Lampreys/growth & development , Larva/genetics , Larva/growth & development , Larva/metabolism , Metamorphosis, Biological/physiology , Pituitary Gland/physiology , Pituitary Hormones/genetics , Pituitary Hormones/metabolism , Receptors, Thyroid Hormone/genetics , Thyroid Gland/physiology , Thyroid Hormones/genetics
17.
J Therm Biol ; 65: 21-25, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28343571

ABSTRACT

We present a method to characterize variable thermal regimes in terms of an equivalent or effective temperature. Our method is based on a first order exponential transformation of a time series of temperatures to yield an exponentially-weighted mean temperature characteristic of the regime and independent of any particular species or end point. The resulting effective temperature or exponential mean, Te¯, offers an improved method for summarizing mean temperature where biological response scales exponentially to temperature. The exponential mean allows growth under varying thermal regimes to be predicted using constant temperature models and offers a compact descriptor communicating the growth capacity of variable thermal regimes. The method combines mathematical simplicity with translatability to different Q10 values without recourse to the underlining time series data. It also provides a quantitative baseline that improves on mean temperature by incorporating the effect of Jensen's inequality and it remains applicable at near zero temperatures where thermal sums lack accuracy.


Subject(s)
Models, Biological , Perciformes/growth & development , Salmonidae/growth & development , Algorithms , Animals , Climate Change , Computer Simulation , Ecosystem , Temperature
18.
Gen Comp Endocrinol ; 247: 215-222, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28212894

ABSTRACT

Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19°C) or below (8°C) the thermal optimum (13°C) and exposure to exogenous thyroid hormone (60µg T4/g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation.


Subject(s)
Acclimatization/physiology , Citrate (si)-Synthase/metabolism , Electron Transport Complex IV/metabolism , Salmonidae/metabolism , Temperature , Thyroid Hormones/pharmacology , Analysis of Variance , Animals , Lakes , Organ Specificity/drug effects , Oxidation-Reduction/drug effects
19.
Gen Comp Endocrinol ; 240: 162-173, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27777046

ABSTRACT

The corticotropin releasing hormone (CRH) system, which includes the CRH family of peptides, their receptors (CRHRs) and a binding protein (CRHBP), has been strongly conserved throughout vertebrate evolution. The identification of invertebrate homologues suggests this system evolved over 500 million years ago. However, the early vertebrate evolution of the CRH system is not understood. Current theory indicates that agnathans (hagfishes and lampreys) are monophyletic with a conservative evolution over the past 500million years and occupy a position at the root of vertebrate phylogeny. We isolated the cDNAs for three CRH family members, two CRHRs and a CRHBP from the sea lamprey, Petromyzon marinus. Two of the CRH peptides are related to the CRH/urotensin-1 (UI) lineage, whereas the other is a urocortin (Ucn) 3 orthologue. The predicted amino acid identity of CRH and UI is 61% but they possess distinct motifs indicative of each peptide, suggesting an early divergence of the two genes. Based on our findings we propose the CRH peptides evolved in at least 3 distinct phases. The first occurring prior to the agnathans gave rise to the CRH/UI-like and Ucn2/3-like paralogous lineages. The second was a partial sub-genomic duplication of the ancestral CRH/UI-like gene, but not the Ucn2/3-like gene, giving rise to the CRH and UI (Ucn) lineages. The third event which resulted in the appearance of Ucn2 and Ucn3 must have occurred after the evolution of the cartilaginous fishes. Interestingly, unlike other vertebrate CRHRs, we were unable to classify our two P. marinus receptors (designated CRHRα and CRHRß) as either type 1 or type 2, indicating that this split evolved later in vertebrate evolution. A single CRHBP gene was found suggesting that either this gene has not been affected by the vertebrate genome duplications or there have been a series of paralogous gene deletions. This study suggests that P. marinus possess a functional CRH system that differs from that of the gnathostomes and may represent a model for the earliest functioning CRH system in vertebrates.


Subject(s)
Corticotropin-Releasing Hormone/genetics , Evolution, Molecular , Petromyzon/genetics , Amino Acid Sequence , Analysis of Variance , Animals , Corticotropin-Releasing Hormone/chemistry , DNA, Complementary/genetics , Genome , Organ Specificity/genetics , Phylogeny , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment , Sequence Analysis, DNA , Stress, Physiological/genetics
20.
Article in English | MEDLINE | ID: mdl-27686607

ABSTRACT

Lipids serve as energy sources, structural components, and signaling molecules during fish embryonic development, and utilization of lipids may vary with temperature. Embryonic energy utilization under different temperatures is an important area of research in light of the changing global climate. Therefore, we examined percent lipid content and fatty acid profiles of lake whitefish (Coregonus clupeaformis) throughout embryonic development at three incubation temperatures. We sampled fertilized eggs and embryos at gastrulation, eyed and fin flutter stages following chronic incubation at temperatures of 1.8, 4.9 and 8.0°C. Hatchlings were also sampled following incubation at temperatures of 3.3, 4.9 and 8.0°C. Fertilized eggs had an initial high percentage of dry mass composed of lipid (percent lipid content; ~29%) consisting of ~20% saturated fatty acids (SFA), ~32% monounsaturated fatty acids (MUFA), ~44% polyunsaturated fatty acids (PUFA), and 4% unidentified. The most abundant fatty acids were 16:0, 16:1, 18:1(n-9c), 20:4(n-6), 20:5(n-3) and 22:6(n-3). This lipid profile matches that of other cold-water fish species. Percent lipid content increased during embryonic development, suggesting protein or other yolk components were preferentially used for energy. Total percentage of MUFA decreased during development, which indicated MUFA were the primary lipid catabolized for energy during embryonic development. Total percentage of PUFA increased during development, driven largely by an increase in 22:6(n-3). Temperature did not influence percent lipid content or percent MUFA at any development stage, and had inconsistent effects on percent SFA and percent PUFA during development. Thus, lake whitefish embryos appear to be highly adapted to low temperatures, and do not alter lipids in response to temperature within their natural incubation conditions.


Subject(s)
Embryo, Nonmammalian/metabolism , Embryonic Development , Fatty Acids/metabolism , Lipid Metabolism , Salmonidae/physiology , Zygote/metabolism , Animals , Cold Temperature/adverse effects , Energy Metabolism , Female , Flame Ionization/veterinary , Gastrulation , Lakes , Male , Ontario , Salmonidae/embryology , Salmonidae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...