Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Shock ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38662597

ABSTRACT

ABSTRACT: Hemorrhagic shock is a major source of morbidity and mortality worldwide. While whole blood or blood product transfusion is a first line treatment, maintaining robust supplies presents significant logistical challenges, particularly in autere environments. OMX is a novel non-hemoglobin (Hb)-based oxygen carrier derived from the H-NOX (Heme-Nitric Oxide/Oxygen binding) protein family. Due to their engineered oxygen (O 2 ) affinities, OMX proteins only deliver O 2 to severely hypoxic tissues. Additionally, unlike Hb-based oxygen carriers, OMX proteins do not scavenge nitric oxide in the vasculature. To determine the safety and efficacy of OMX in supporting tissue oxygen delivery and cardiovascular function in a large-animal model of controlled hemorrhage, 2-3-week-old lambs were anesthetized, intubated, and mechanically ventilated. Hypovolemic shock was induced by acute hemorrhage to obtain a 50% reduction over 30 minutes. Vehicle (n = 16) or 400 mg/kg OMX (n = 13) treatment was administered over 15 minutes. Hemodynamics, arterial blood gases, and laboratory values were monitored throughout the 6 hour study. Comparisons between groups were made using T tests, Wilcoxon Rank Sum test, and Fisher's Exact test. Survival was assessed using Kaplan Meier curves and the Log-Rank test. We found that OMX was well-tolerated and significantly improved lactate and base deficit trends, and hemodynamic indices (p < 0.05). Median survival time was greater in the OMX-treated group (4.7 vs. 6.0 hr., p < 0.003), and overall survival was significantly increased in the OMX-treated group (25% vs. 85%, p = 0.004). We conclude that OMX is well-tolerated and improves metabolic, hemodynamic and survival outcomes in an ovine model of controlled hemorrhagic shock.

2.
Children (Basel) ; 10(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-38002819

ABSTRACT

Originally approved by the U.S. Food and Drug Administration (FDA) for its antihistamine properties, clemastine can also promote white matter integrity and has shown promise in the treatment of demyelinating diseases such as multiple sclerosis. Here, we conducted an in-depth analysis of the feasibility, safety, and neuroprotective efficacy of clemastine administration in near-term lambs (n = 25, 141-143 days) following a global ischemic insult induced via an umbilical cord occlusion (UCO) model. Lambs were randomly assigned to receive clemastine or placebo postnatally, and outcomes were assessed over a six-day period. Clemastine administration was well tolerated. While treated lambs demonstrated improvements in inflammatory scores, their neurodevelopmental outcomes were unchanged.

3.
Stroke ; 54(11): 2864-2874, 2023 11.
Article in English | MEDLINE | ID: mdl-37846563

ABSTRACT

BACKGROUND: Hypoxic-ischemic brain injury/encephalopathy affects about 1.15 million neonates per year, 96% of whom are born in low- and middle-income countries. Therapeutic hypothermia is not effective in this setting, possibly because injury occurs significantly before birth. Here, we studied the pharmacokinetics, safety, and efficacy of perinatal azithromycin administration in near-term lambs following global ischemic injury to support earlier treatment approaches. METHODS: Ewes and their lambs of both sexes (n=34, 141-143 days) were randomly assigned to receive azithromycin or placebo before delivery as well as postnatally. Lambs were subjected to severe global hypoxia-ischemia utilizing an acute umbilical cord occlusion model. Outcomes were assessed over a 6-day period. RESULTS: While maternal azithromycin exhibited relatively low placental transfer, azithromycin-treated lambs recovered spontaneous circulation faster following the initiation of cardiopulmonary resuscitation and were extubated sooner. Additionally, peri- and postnatal azithromycin administration was well tolerated, demonstrating a 77-hour plasma elimination half-life, as well as significant accumulation in the brain and other tissues. Azithromycin administration resulted in a systemic immunomodulatory effect, demonstrated by reductions in proinflammatory IL-6 (interleukin-6) levels. Treated lambs exhibited a trend toward improved neurodevelopmental outcomes while histological analysis revealed that azithromycin supported white matter preservation and attenuated inflammation in the cingulate and parasagittal cortex. CONCLUSIONS: Perinatal azithromycin administration enhances neonatal resuscitation, attenuates neuroinflammation, and supports limited improvement of select histological outcomes in an ovine model of hypoxic-ischemic brain injury/encephalopathy.


Subject(s)
Brain Injuries , Hypothermia, Induced , Hypoxia-Ischemia, Brain , Male , Animals , Sheep , Female , Pregnancy , Hypoxia-Ischemia, Brain/drug therapy , Azithromycin/pharmacology , Azithromycin/therapeutic use , Neuroprotection , Placenta , Resuscitation/adverse effects , Hypothermia, Induced/methods , Brain Injuries/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...