Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(31): 12264-12269, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39118606

ABSTRACT

Metal oxides are promising (photo)electrocatalysts for sustainable energy technologies due to their good activity and abundant resources. Their applications such as photocatalytic water splitting predominantly involve aqueous interfaces under electrochemical conditions, but in situ probing oxide-water interfaces is proven to be extremely challenging. Here, we present an electrochemical scanning tunneling microscopy (EC-STM) study on the rutile TiO2(110)-water interface, and by tuning surface redox chemistry with careful potential control we are able to obtain high quality images of interfacial structures with atomic details. It is interesting to find that the interfacial water exhibits an unexpected double-row pattern that has never been observed. This finding is confirmed by performing a large scale simulation of a stepped interface model enabled by machine learning accelerated molecular dynamics (MLMD) with ab initio accuracy. Furthermore, we show that this pattern is induced by the steps present on the surface, which can propagate across the terraces through interfacial hydrogen bonds. Our work demonstrates that by combining EC-STM and MLMD we can obtain new atomic details of interfacial structures that are valuable to understand the activity of oxides under realistic conditions.

2.
Phys Chem Chem Phys ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39129412

ABSTRACT

Lithium, a representative alkali metal, holds the coveted status of the "holy grail" in the realm of next-generation rechargeable batteries, owing to its remarkable theoretical specific capacity and low electrode potential. However, the inherent reactivity of Li metal inevitably results in the formation of the solid-electrolyte interphase (SEI) on its surface, adding complexity to the Li electrodeposition process compared to conventional metal electrodeposition. Attaining uniform Li deposition is crucial for ensuring stable, long-cycle performance and high Coulombic efficiency in Li metal batteries, which requires a comprehensive understanding of the underlying factors governing the electrodeposition process. This review delves into the intricate kinetics of Li electrodeposition, elucidating the multifaceted factors that influence charge and mass transfer kinetics. The intrinsic relationship between charge transfer kinetics and Li deposition is scrutinized, exploring how parameters such as current density and electrode potential impact Li nucleation and growth, as well as dendrite formation. Additionally, the applicability of classical mass-transfer-controlled electrodeposition models to Li anode systems is evaluated, considering the influence of ionic concentration and solvation structure on Li+ transport, SEI formation, and subsequent deposition kinetics. The pivotal role of SEI compositional structure and physicochemical properties in governing charge and mass transfer processes is underscored, with an emphasis on strategies for regulating Li deposition kinetics from both electrolyte and SEI perspectives. Finally, future directions in Li electrodeposition research are outlined, emphasizing the importance of ongoing exploration from a kinetic standpoint to fully unlock the potential of Li metal batteries.

3.
Nat Commun ; 15(1): 5624, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965231

ABSTRACT

Graphene has been extensively utilized as an electrode material for nonaqueous electrochemical capacitors. However, a comprehensive understanding of the charging mechanism and ion arrangement at the graphene/electrolyte interface remain elusive. Herein, a gap-enhanced Raman spectroscopic strategy is designed to characterize the dynamic interfacial process of graphene with an adjustable number of layers, which is based on synergistic enhancement of localized surface plasmons from shell-isolated nanoparticles and a metal substrate. By employing such a strategy combined with complementary characterization techniques, we study the potential-dependent configuration of adsorbed ions and capacitance curves for graphene based on the number of layers. As the number of layers increases, the properties of graphene transform from a metalloid nature to graphite-like behavior. The charging mechanism shifts from co-ion desorption in single-layer graphene to ion exchange domination in few-layer graphene. The increase in area specific capacitance from 64 to 145 µF cm-2 is attributed to the influence on ion packing, thereby impacting the electrochemical performance. Furthermore, the potential-dependent coordination structure of lithium bis(fluorosulfonyl) imide in tetraglyme ([Li(G4)][FSI]) at graphene/electrolyte interface is revealed. This work adds to the understanding of graphene interfaces with distinct properties, offering insights for optimization of electrochemical capacitors.

4.
Annu Rev Anal Chem (Palo Alto Calif) ; 17(1): 103-126, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38603469

ABSTRACT

The electrochemical interface formed between an electrode and an electrolyte significantly affects the rate and mechanism of the electrode reaction through its structure and properties, which vary across the interface. The scope of the interface has been expanded, along with the development of energy electrochemistry, where a solid-electrolyte interphase may form on the electrode and the active materials change properties near the surface region. Developing a comprehensive understanding of electrochemical interfaces and interphases necessitates three-dimensional spatial resolution characterization. Atomic force microscopy (AFM) offers advantages of imaging and long-range force measurements. Here we assess the capabilities of AFM by comparing the force curves of different regimes and various imaging modes for in situ characterizing of electrochemical interfaces and interphases. Selected examples of progress on work related to the structures and processes of electrode surfaces, electrical double layers, and lithium battery systems are subsequently illustrated. Finally, this review provides perspectives on the future development of electrochemical AFM.

5.
Small ; 20(28): e2311393, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38287737

ABSTRACT

Electrolyte plays a crucial role in ensuring stable operation of lithium metal batteries (LMBs). Localized high-concentration electrolytes (LHCEs) have the potential to form a robust solid-electrolyte interphase (SEI) and mitigate Li dendrite growth, making them a highly promising electrolyte option. However, the principles governing the selection of diluents, a crucial component in LHCE, have not been clearly determined, hampering the advancement of such a type of electrolyte systems. Herein, the diluents from the perspective of molecular polarity are rationally designed and developed. A moderately fluorinated solvent, 1-(1,1,2,2-tetrafluoroethoxy)propane (TNE), is employed as a diluent to create a novel LHCE. The unique molecular structure of TNE enhances the intrinsic dipole moment, thereby altering solvent interactions and the coordination environment of Li-ions in LHCE. The achieved solvation structure not only enhances the bulk properties of LHCE, but also facilitates the formation of more stable anion-derived SEIs featured with a higher proportion of inorganic species. Consequently, the corresponding full cells of both Li||LiFePO4 and Li||LiNi0.8Co0.1Mn0.1O2 cells utilizing Li thin-film anodes exhibit extended long-term stability with significantly improved average Coulombic efficiency. This work offers new insights into the functions of diluents in LHCEs and provides direction for further optimizing the LHCEs for LMBs.

SELECTION OF CITATIONS
SEARCH DETAIL