Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
Add more filters











Publication year range
1.
ACS Appl Mater Interfaces ; 16(38): 50054-50060, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39283756

ABSTRACT

The understanding of the interfacial processes is critically important for extending the practical application of ionic liquids, particularly for the role of interfacial water. In the electrochemical system based on ionic liquid electrolytes, small amounts of water at the interface generate a significant change in the electrochemical behaviors of ionic liquids. Therefore, the investigation on the interfacial behavior of water is highly desired in ionic liquids with different anions, water content, and hydrophilicity. Herein, based on the probe strategy, in situ surface enhanced Raman spectroscopy (SERS) combined with electrochemical control (EC-SERS) was developed to investigate the influence of hydrophilicity/hydrophobicity of ionic liquids on the interfacial water. The water-sensitive transformation reaction of 4,4'-dimercaptoazobenzene (DMAB) to para-aminothiophenol (PATP) was employed as a probe reaction for investigating the behavior of interfacial water. The changes of relative SERS intensities of DMAB to PATP served as an indication of the quantity variation of interfacial water. The results show that the transformation reaction efficiencies were critically dependent on the additional water contents, potential, and hydrophilicity of ionic liquids. With a very low molar fraction of additional water (Xw = 0.01), transformation efficiency of DMAB (the amount of interfacial water) followed the sequence of [BMIm]BF4 < [BMIm]PF6 < [BMIm]Tf2N. It was in agreement with the hydrophobicity order of the ionic liquids. With the increase in additional water content, the potential for the full transformation was positively moved, and the efficiency increased significantly. The stronger hydrophobicity allowed more water molecules to migrate to the interface, which was attributed to the difference in interactions between water and the anions of ionic liquids. It demonstrated that the small amount of water tended to gather at the interface in hydrophobic ionic liquids. Compared to traditional cyclic voltammetry, the EC-SERS technique combined with probe reactions is more sensitive to interfacial water. It is anticipated to develop as a promising tool for the investigating water-related issues at interfaces and to provide guidance to screen ionic liquids for practical application.

2.
Phys Chem Chem Phys ; 26(36): 23544-23560, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39129412

ABSTRACT

Lithium, a representative alkali metal, holds the coveted status of the "holy grail" in the realm of next-generation rechargeable batteries, owing to its remarkable theoretical specific capacity and low electrode potential. However, the inherent reactivity of Li metal inevitably results in the formation of the solid-electrolyte interphase (SEI) on its surface, adding complexity to the Li electrodeposition process compared to conventional metal electrodeposition. Attaining uniform Li deposition is crucial for ensuring stable, long-cycle performance and high Coulombic efficiency in Li metal batteries, which requires a comprehensive understanding of the underlying factors governing the electrodeposition process. This review delves into the intricate kinetics of Li electrodeposition, elucidating the multifaceted factors that influence charge and mass transfer kinetics. The intrinsic relationship between charge transfer kinetics and Li deposition is scrutinized, exploring how parameters such as current density and electrode potential impact Li nucleation and growth, as well as dendrite formation. Additionally, the applicability of classical mass-transfer-controlled electrodeposition models to Li anode systems is evaluated, considering the influence of ionic concentration and solvation structure on Li+ transport, SEI formation, and subsequent deposition kinetics. The pivotal role of SEI compositional structure and physicochemical properties in governing charge and mass transfer processes is underscored, with an emphasis on strategies for regulating Li deposition kinetics from both electrolyte and SEI perspectives. Finally, future directions in Li electrodeposition research are outlined, emphasizing the importance of ongoing exploration from a kinetic standpoint to fully unlock the potential of Li metal batteries.

3.
Chem Sci ; 15(31): 12264-12269, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39118606

ABSTRACT

Metal oxides are promising (photo)electrocatalysts for sustainable energy technologies due to their good activity and abundant resources. Their applications such as photocatalytic water splitting predominantly involve aqueous interfaces under electrochemical conditions, but in situ probing oxide-water interfaces is proven to be extremely challenging. Here, we present an electrochemical scanning tunneling microscopy (EC-STM) study on the rutile TiO2(110)-water interface, and by tuning surface redox chemistry with careful potential control we are able to obtain high quality images of interfacial structures with atomic details. It is interesting to find that the interfacial water exhibits an unexpected double-row pattern that has never been observed. This finding is confirmed by performing a large scale simulation of a stepped interface model enabled by machine learning accelerated molecular dynamics (MLMD) with ab initio accuracy. Furthermore, we show that this pattern is induced by the steps present on the surface, which can propagate across the terraces through interfacial hydrogen bonds. Our work demonstrates that by combining EC-STM and MLMD we can obtain new atomic details of interfacial structures that are valuable to understand the activity of oxides under realistic conditions.

4.
Nat Commun ; 15(1): 5624, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965231

ABSTRACT

Graphene has been extensively utilized as an electrode material for nonaqueous electrochemical capacitors. However, a comprehensive understanding of the charging mechanism and ion arrangement at the graphene/electrolyte interface remain elusive. Herein, a gap-enhanced Raman spectroscopic strategy is designed to characterize the dynamic interfacial process of graphene with an adjustable number of layers, which is based on synergistic enhancement of localized surface plasmons from shell-isolated nanoparticles and a metal substrate. By employing such a strategy combined with complementary characterization techniques, we study the potential-dependent configuration of adsorbed ions and capacitance curves for graphene based on the number of layers. As the number of layers increases, the properties of graphene transform from a metalloid nature to graphite-like behavior. The charging mechanism shifts from co-ion desorption in single-layer graphene to ion exchange domination in few-layer graphene. The increase in area specific capacitance from 64 to 145 µF cm-2 is attributed to the influence on ion packing, thereby impacting the electrochemical performance. Furthermore, the potential-dependent coordination structure of lithium bis(fluorosulfonyl) imide in tetraglyme ([Li(G4)][FSI]) at graphene/electrolyte interface is revealed. This work adds to the understanding of graphene interfaces with distinct properties, offering insights for optimization of electrochemical capacitors.

5.
Annu Rev Anal Chem (Palo Alto Calif) ; 17(1): 103-126, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38603469

ABSTRACT

The electrochemical interface formed between an electrode and an electrolyte significantly affects the rate and mechanism of the electrode reaction through its structure and properties, which vary across the interface. The scope of the interface has been expanded, along with the development of energy electrochemistry, where a solid-electrolyte interphase may form on the electrode and the active materials change properties near the surface region. Developing a comprehensive understanding of electrochemical interfaces and interphases necessitates three-dimensional spatial resolution characterization. Atomic force microscopy (AFM) offers advantages of imaging and long-range force measurements. Here we assess the capabilities of AFM by comparing the force curves of different regimes and various imaging modes for in situ characterizing of electrochemical interfaces and interphases. Selected examples of progress on work related to the structures and processes of electrode surfaces, electrical double layers, and lithium battery systems are subsequently illustrated. Finally, this review provides perspectives on the future development of electrochemical AFM.

6.
Small ; 20(28): e2311393, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38287737

ABSTRACT

Electrolyte plays a crucial role in ensuring stable operation of lithium metal batteries (LMBs). Localized high-concentration electrolytes (LHCEs) have the potential to form a robust solid-electrolyte interphase (SEI) and mitigate Li dendrite growth, making them a highly promising electrolyte option. However, the principles governing the selection of diluents, a crucial component in LHCE, have not been clearly determined, hampering the advancement of such a type of electrolyte systems. Herein, the diluents from the perspective of molecular polarity are rationally designed and developed. A moderately fluorinated solvent, 1-(1,1,2,2-tetrafluoroethoxy)propane (TNE), is employed as a diluent to create a novel LHCE. The unique molecular structure of TNE enhances the intrinsic dipole moment, thereby altering solvent interactions and the coordination environment of Li-ions in LHCE. The achieved solvation structure not only enhances the bulk properties of LHCE, but also facilitates the formation of more stable anion-derived SEIs featured with a higher proportion of inorganic species. Consequently, the corresponding full cells of both Li||LiFePO4 and Li||LiNi0.8Co0.1Mn0.1O2 cells utilizing Li thin-film anodes exhibit extended long-term stability with significantly improved average Coulombic efficiency. This work offers new insights into the functions of diluents in LHCEs and provides direction for further optimizing the LHCEs for LMBs.

7.
Nanoscale ; 15(46): 18603-18612, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37927229

ABSTRACT

Hydrophobic ionic liquids (ILs), broadly utilized as electrolytes, face limitations in practical applications due to their hygroscopicity, which narrows their electrochemical windows via water electrolysis. Herein, we scrutinized the impact of incorporating cheap salts on the electrochemical stability of wet hydrophobic ILs. We observed that alkali ions effectively manipulate the solvation structure of water and regulate the electrical double layer (EDL) structure by subtly adjusting the free energy distribution of water in wet ILs. Specifically, alkali ions significantly disrupted the hydrogen bond network, reducing free water, strengthening the O-H bond, and lowering water activity in bulk electrolytes. This effect was particularly pronounced in EDL regions, where most water molecules were repelled from both the cathode and anode with the disappearance of the H-bond network connectivity along the EDL. The residual interfacial water underwent reorientation, inhibiting water electrolysis and thus enhancing the electrochemical window of wet hydrophobic ILs. This theoretical proposition was confirmed by cyclic voltammetry measurements, demonstrating a 45% enhancement in the electrochemical windows for salt-in-wet ILs, approximating the dry one. This work offers feasible strategies for tuning the EDL and managing interfacial water activity, expanding the comprehension of interface engineering for advanced electrochemical systems.

8.
Nano Lett ; 23(21): 9872-9879, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37856869

ABSTRACT

Lithium metal deposition is strongly affected by the intrinsic properties of the solid-electrolyte interphase (SEI) and working electrolyte, but a relevant understanding is far from complete. Here, by employing multiple electrochemical techniques and the design of SEI and electrolyte, we elucidate the electrochemistry of Li deposition under mass transport control. It is discovered that SEIs with a lower Li ion transference number and/or conductivity induce a distinctive current transition even under moderate potentiostatic polarization, which is associated with the control regime transition of Li ion transport from the SEI to the electrolyte. Furthermore, our findings help reveal the creation of a space-charge layer at the electrode/SEI interface due to the involvement of the diffusion process of Li ions through the SEI, which promotes the formation of dendrite embryos that develop and eventually trigger SEI breakage and the control regime transition of Li ion transport. Our insight into the very initial dendritic growth mechanism offers a bridge toward design and control for superior SEIs.

9.
ACS Appl Mater Interfaces ; 15(25): 31057-31066, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37317823

ABSTRACT

Anion exchange membrane (AEM) fuel cells have gained significant interest in recent years due to their promising applications in cost-effective and environmentally friendly energy conversion. Among various factors that affect their performance, water content plays an important role in the conductivity and stability of AEMs. However, the effect of the hydration level on the microstructure of AEMs and the correlation between the microstructure and macroconductivity have not been systematically investigated. In this work, four AEMs, quaternary ammonia polysulfone, quaternary ammonia poly(N-methyl-piperidine-co-p-terphenyl) (QAPPT), and bromoalkyl-tethered poly(biphenyl alkylene)s PBPA and PBPA-co-BPP, have been studied by atomic force microscopy and electrochemical impedance spectroscopy to elucidate the correlation between the humidity-dependent surface microstructure and macroconductivity of the AEMs. We obtained phase images by atomic force microscopy and identified hydrophilic and hydrophobic domains by fitting the distribution curve of phase images, which reasonably distinguishes hydrophilic domains from hydrophobic domains of the membrane surface, and thus, the surface hydrophilic area ratio and average size could be quantitatively analyzed. The conductivities of the membranes were then measured by electrochemical impedance spectroscopy at various humidities. The joint results from atomic force microscopy and electrochemical measurements help clarify the effect of the hydration level on the microphase separation and ionic conduction of the membranes.

10.
Nat Commun ; 14(1): 3536, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37321993

ABSTRACT

The solid-electrolyte interphase (SEI) plays crucial roles for the reversible operation of lithium metal batteries. However, fundamental understanding of the mechanisms of SEI formation and evolution is still limited. Herein, we develop a depth-sensitive plasmon-enhanced Raman spectroscopy (DS-PERS) method to enable in-situ and nondestructive characterization of the nanostructure and chemistry of SEI, based on synergistic enhancements of localized surface plasmons from nanostructured Cu, shell-isolated Au nanoparticles and Li deposits at different depths. We monitor the sequential formation of SEI in both ether-based and carbonate-based dual-salt electrolytes on a Cu current collector and then on freshly deposited Li, with dramatic chemical reconstruction. The molecular-level insights from the DS-PERS study unravel the profound influences of Li in modifying SEI formation and in turn the roles of SEI in regulating the Li-ion desolvation and the subsequent Li deposition at SEI-coupled interfaces. Last, we develop a cycling protocol that promotes a favorable direct SEI formation route, which significantly enhances the performance of anode-free Li metal batteries.


Subject(s)
Metal Nanoparticles , Nanostructures , Lithium , Gold , Spectrum Analysis, Raman , Electrolytes
11.
J Phys Chem Lett ; 14(22): 5163-5171, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37253105

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) has been widely applied in the identification and characterization of DNA structures with high efficiency. Especially, the SERS signals of the adenine group have exhibited high detection sensitivity in several biomolecular systems. However, there is still no unanimous conclusion regarding the interpretation of some special kinds of SERS signals of adenine and its derivatives on silver colloids and electrodes. This Letter presents a new photochemical azo coupling reaction for adenyl residues, in which the adenine is selectively oxidized to (E)-1,2-di(7H-purin-6-yl) diazene (azopurine) in the presence of silver ions, silver colloids, and electrodes of nanostructures under visible light irradiation. The product, azopurine, is first found to be responsible for the SERS signals. This photoelectrochemical oxidative coupling reaction of adenine and its derivatives is promoted by plasmon-mediated hot holes and is regulated by positive potentials and pH of solutions, which opens up new avenues for studying azo coupling in the photoelectrochemistry of adenine-containing biomolecules on electrode surfaces of plasmonic metal nanostructures.

12.
J Am Chem Soc ; 145(22): 11959-11968, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37216562

ABSTRACT

In the pursuit of a highly reversible lithium-oxygen (Li-O2) battery, control of reaction sites to maintain stable conversion between O2 and Li2O2 at the cathode side is imperatively desirable. However, the mechanism involving the reaction site during charging remains elusive, which, in turn, imposes challenges in recognition of the origin of overpotential. Herein, via combined investigations by in situ atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS), we propose a universal morphology-dictated mechanism of efficient reaction sites for Li2O2 decomposition. It is found that Li2O2 deposits with different morphologies share similar localized conductivities, much higher than that reported for bulk Li2O2, enabling the reaction site not only at the electrode/Li2O2/electrolyte interface but also at the Li2O2/electrolyte interface. However, while the mass transport process is more enhanced at the former, the charge-transfer resistance at the latter is sensitively related to the surface structure and thus the reactivity of the Li2O2 deposit. Consequently, for compact disk-like deposits, the electrode/Li2O2/electrolyte interface serves as the dominant decomposition site, which causes premature departure of Li2O2 and loss of reversibility; on the contrary, for porous flower-like and film-like Li2O2 deposits bearing a larger surface area and richer surface-active structures, both the interfaces are efficient for decomposition without premature departure of the deposit so that the overpotential arises primarily from the sluggish oxidation kinetics and the decomposition is more reversible. The present work provides instructive insights into the understanding of the mechanism of reaction sites during the charge process, which offers guidance for the design of reversible Li-O2 batteries.

13.
Anal Chem ; 95(15): 6458-6466, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37027511

ABSTRACT

The (5 × 5) Moiré pattern resulting from coadsorption of Cu atoms and chloride ions on the Au(111) electrode is one of the most classical structures for underpotential deposition (UPD) in electrochemical surface science. Although two models have been proposed to describe the pattern, the details of the structure remain ambiguous and controversial, leading to a question that remains to be answered. In this work, we investigate the UPD behaviors of Cu on the Au(111) electrode in a chloride-based deep eutectic solvent ethaline by in situ scanning tunneling microscopy (STM). Benefiting from the properties of the ultraconcentrated electrolyte, we directly image not only Cu but also Cl adlayers by finely tuning tunneling conditions. The structure is unambiguously determined for both Cu and Cl adlayers, where an incommensurate Cu layer is adsorbed on the Au(111) surface with a Cu coverage of 0.64, while the Cl coverage is 0.32 (only half of the expected value); i.e., the atomic arrangement of the observed (5 × 5) Moiré pattern in ethaline matches neither of the models proposed in the literature. Meanwhile, STM results confirm the origin of the cathodic peak in the cyclic voltammogram, which indicates that the underpotential shift of Cu UPD in ethaline indeed increases by ca. 0.40 V compared to its counterpart in a sulfuric acid solution, resulting in a significant deviation from the linear relation between the underpotential shift and the difference in work functions proposed in the literature. The unconventional electrochemical behaviors of Cu UPD reveal the specialty of both the bulk and the interface in the chloride-based deep eutectic solvent.

14.
Molecules ; 28(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36903545

ABSTRACT

Traditional coupling of ligands for gold wet etching makes large-scale applications problematic. Deep eutectic solvents (DESs) are a new class of environment-friendly solvents, which could possibly overcome the shortcomings. In this work, the effect of water content on the Au anodic process in DES ethaline was investigated by combining linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Meanwhile, we employed atomic force microscopy (AFM) to image the evolution of the surface morphology of the Au electrode during its dissolution and passivation process. The obtained AFM data help to explain the observations about the effect of water content on the Au anodic process from the microscopic perspective. High water contents make the occurrence of anodic dissolution of gold at higher potential, but enhances the rate of the electron transfer and gold dissolution. AFM results reveal the occurrence of massive exfoliation, which confirms that the gold dissolution reaction is more violent in ethaline with higher water contents. In addition, AFM results illustrate that the passive film and its average roughness could be tailored by changing the water content of ethaline.

15.
Adv Mater ; 35(16): e2209833, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36780277

ABSTRACT

Solid state potassium (K) metal batteries are intriguing in grid-scale energy storage, benefiting from the low cost, safety, and high energy density. However, their practical applications are impeded by poor K/solid electrolyte (SE) interfacial contact and limited capacity caused by the low K self-diffusion coefficient, dendrite growth, and intrinsically low melting point/soft features of metallic K. Herein, a fused-modeling strategy using potassiophilic carbon allotropes molted with K is demonstrated that can enhance the electrochemical performance/stability of the system via promoting K diffusion kinetics (2.37 × 10-8 cm2 s-1 ), creating a low interfacial resistance (≈1.3 Ω cm2 ), suppressing dendrite growth, and maintaining mechanical/thermal stability at 200 °C. A homogeneous/stable K stripping/plating is consequently implemented with a high current density of 2.8 mA cm-2 (at 25 °C) and a record-high areal capacity of 11.86 mAh cm-2 (at 0.2 mA cm-2 ). The enhanced K diffusion kinetics contribute to sustaining intimate interfacial contact, stabilizing the stripping/plating at high current densities. Full cells coupling ultrathin K-C composite anodes (≈50 µm) with Prussian blue cathodes and ß/ß″-Al2 O3 SEs deliver a high energy density of 389 Wh kg-1 with a retention of 94.4% after 150 cycles and fantastic performances at -20 to 120 °C.

16.
ACS Appl Mater Interfaces ; 14(28): 31911-31919, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35796315

ABSTRACT

The quality of perovskite films plays a crucial role in the performance of the corresponding devices. However, the commonly employed perovskite polycrystalline films often contain a high density of defects created during film production and cell operation, including unsaturated coordinated Pb2+ and Pb0, which can act as nonradiative recombination centers, thus reducing open-circuit voltage. Effectively eliminating both kinds of defects is an important subject of research to improve the power conversion efficiency (PCE). Here, we employ hydrogen octylphosphonate potassium (KHOP) as a multifunctional additive to passivate defects. The molecule is introduced into perovskite precursor solution to regulate the perovskite film growth process by coordinating with Pb, which can not only passivate the Pb2+ defect but also effectively inhibit the production of Pb0; at the same time, the presence of K+ reduces device hysteresis by inhibiting I- migration and finally realizes double passivation of Pb2+ and I--based defects. Moreover, the moderate hydrophobic alkyl chain in the molecule improves the moisture stability. Ultimately, the optimal efficiency can reach 22.21%.

17.
Nano Lett ; 22(7): 2755-2761, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35315673

ABSTRACT

Oxide heterointerfaces with high carrier density can interact strongly with the lattice phonons, generating considerable plasmon-phonon coupling and thereby perturbing the fascinating optical and electronic properties, such as two-dimensional electron gas, ferromagnetism, and superconductivity. Here we use infrared-spectroscopic nanoimaging based on scattering-type scanning near-field optical microscopy (s-SNOM) to quantify the interaction of electron-phonon coupling and the spatial distribution of local charge carriers at the SrTiO3/TiO2 interface. We found an increased high-frequency dielectric constant (ε∞ = 7.1-9.0) and charge carrier density (n = 6.5 × 1019 to 1.5 × 1020 cm-3) near the heterointerface. Moreover, quantitative information between the charge carrier density and extension thickness across the heterointerface has been extracted by monochromatic near-field imaging. A direct evaluation of the relationship between the thickness and the interaction of charge carrier-phonon coupling of the heterointerface would provide valuable information for the development of oxide-based electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL