Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675085

ABSTRACT

Photosynthetic capacity is usually affected by light intensity in the field. In this study, photosynthetic characteristics of four different Triticeae crops (wheat, triticale, barley, and highland barley) were investigated based on chlorophyll fluorescence and the level of photosynthetic proteins under high light. Compared with wheat, three cereals (triticale, barley, and highland barley) presented higher photochemical efficiency and heat dissipation under normal light and high light for 3 h, especially highland barley. In contrast, lower photoinhibition was observed in barley and highland barley relative to wheat and triticale. In addition, barley and highland barley showed a lower decline in D1 and higher increase in Lhcb6 than wheat and triticale under high light. Furthermore, compared with the control, the results obtained from PSII protein phosphorylation showed that the phosphorylation level of PSII reaction center proteins (D1 and D2) was higher in barley and highland barley than that of wheat and triticale. Therefore, we speculated that highland barley can effectively alleviate photodamages to photosynthetic apparatus by high photoprotective dissipation, strong phosphorylation of PSII reaction center proteins, and rapid PSII repair cycle under high light.


Subject(s)
Chlorophyll , Hordeum , Chlorophyll/metabolism , Photosystem II Protein Complex/metabolism , Photosynthesis/physiology , Light , Light-Harvesting Protein Complexes/metabolism , Hordeum/metabolism
2.
Environ Pollut ; 319: 120973, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36584859

ABSTRACT

Bioremediation with photosynthetic bacteria (PSB) is thought to be a promising removal method for hexavalent chromium [Cr(VI)]-containing wastewater. In the present study, Rhodobacter sphaeroides (R. sphaeroides) SC01 was used for the investigation of Cr(VI) removal in Cr(VI)-contaminated solution in the presence of melatonin. It was found that exogenous melatonin alleviated oxidative damage to R. sphaeroides SC01, increased Cr (VI) absorption capacity of cell membrane, and improved the reduction efficiency of Cr(VI) via the activation of chromate reductants. The results showed that melatonin could further promote the increase in Cr(VI) removal efficiency, reaching up to 97.8%. Furthermore, melatonin application resulted in 296.9%, 44.4%, and 69.7% upregulation of ascorbic acid (AsA), glutathione (GSH), and cysteine (Cys) relative to non-melatioin treated R. sphaeroides SC01 at 48 h. In addition, the resting cells, cell-free supernatants (CFS), and cell-free extracts (CFE) with melatonin had a higher Cr(VI) removal rate of 18.6%, 82.0%, and 15.2% compared with non-melatonin treated R. sphaeroides SC01. Fourier transform infrared spectroscopy (FTIR) revealed that melatonin increased the binding of Cr(III) with PO43- and CO groups on cell membrane of R. sphaeroides SC01. X-ray diffractometer (XRD) analysis demonstrated that melatonin remarkably bioprecipitated the production of CrPO4·6H2O in R. sphaeroides SC01. Hence, these results indicated that melatonin plays the important role in the reduction and uptake of Cr(VI), demonstrating it is a great promising strategy for the management of Cr(VI) contaminated wastewater in photosynthetic bacteria.


Subject(s)
Melatonin , Rhodobacter sphaeroides , Water Pollutants, Chemical , Rhodobacter sphaeroides/metabolism , Antioxidants , Melatonin/pharmacology , Wastewater , Chromium/chemistry , Adsorption , Water Pollutants, Chemical/analysis
3.
Ecotoxicol Environ Saf ; 249: 114356, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36508799

ABSTRACT

Lead (Pb2+) pollution in the soil sub-ecosystem has been a continuously growing problem due to economic development and ever-increasing anthropogenic activities across the world. In this study, the photosynthetic performance and antioxidant capacity of Triticeae cereals (rye, wheat and triticale) were compared to assess the activities of antioxidants, the degree of oxidative damage, photochemical efficiency and the levels of photosynthetic proteins under Pb stress (0.5 mM, 1 mM and 2 mM Pb (NO3)2). Compared with triticale, Pb treatments imposed severe oxidative damage in rye and wheat. In addition, the highest activity of major antioxidant enzymes (SOD, POD, CAT, and GPX) was also found to be elevated. Triticale accumulated the highest Pb contents in roots. The concentration of mineral ions (Mg, Ca, and K) was also high in its leaves, compared with rye and wheat. Consistently, triticale showed higher photosynthetic activity under Pb stress. Immunoblotting of proteins revealed that rye and wheat have significantly lower levels of D1 (photosystem II subunit A, PsbA) and D2 (photosystem II subunit D, PsbD) proteins, while no obvious decrease was noticed in triticale. The amount of light-harvesting complex II b6 (Lhcb6; CP24) and light-harvesting complex II b5 (Lhcb5; CP26) was significantly increased in rye and wheat. However, the increase in PsbS (photosystem II subunit S) protein only occurred in wheat and triticale exposed to Pb treatment. Taken together, these findings demonstrate that triticale shows higher antioxidant capacity and photosynthetic efficiency than wheat and rye under Pb stress, suggesting that triticale has high tolerance to Pb and could be used as a heavy metal-tolerant plant.


Subject(s)
Lead , Oxidative Stress , Photosystem II Protein Complex , Secale , Soil Pollutants , Triticale , Triticum , Ecosystem , Lead/toxicity , Secale/drug effects , Secale/enzymology , Triticale/drug effects , Triticale/enzymology , Triticum/drug effects , Triticum/enzymology , Soil Pollutants/toxicity
4.
Front Plant Sci ; 13: 966181, 2022.
Article in English | MEDLINE | ID: mdl-35982696

ABSTRACT

It has been well demonstrated that melatonin plays an important protective role in photosynthesis of plants under various environmental stresses, while the detailed mechanisms by which melatonin protects photosystem II (PSII) under environmental stress are still unclear. In the study, the effects of melatonin on photosynthetic efficiency, energy dissipation, PSII protein composition, and reversible phosphorylation of thylakoid proteins were investigated in wheat plants under osmotic stress. The results showed that osmotic stress significantly reduced pigment content, photochemical efficiency of PSII, oxygen-evolving activity, and dissipation of excess excitation energy, while 25 µM melatonin applications greatly alleviated their decline under osmotic stress. Western blot data of PSII proteins revealed that melatonin upregulated the levels of D1, Lhcb5, Lhcb6, PsbQ, and PsbS proteins in wheat exposed to osmotic stress. In addition, thylakoid membrane proteins were strongly phosphorylated in wheat under osmotic stress with or without melatonin. Furthermore, the results from PSII protein dephosphorylation showed that exogenous melatonin promoted the dephosphorylation of LCHII, CP43, and D1 under osmotic stress. Therefore, our findings suggest that melatonin can provide an effective protection for the photosynthetic apparatus by the regulation of PSII proteins and the reversible phosphorylation of thylakoid proteins under drought stress.

5.
Ecotoxicol Environ Saf ; 239: 113688, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35644094

ABSTRACT

Heavy metal air pollution poses a serious threat to human health and the environment in Chinese tourist cities. In this study, we investigated the temporal and spatial variations of atmospheric heavy metal pollution using moss bags in Xichang, a tourist destination in Southwest China. The biomonitoring investigation used an indigenous moss (Taxiphyllum taxirameum) transplanted into bags. Moss bags were exposed to 22 sites including industrial, agricultural, urban/residential, tourist, and high-traffic sites, across four different seasons in 2019-2020. The results showed that T. taxirameum was a good biomonitor of air pollution in Xichang. Among the 22 sample points, air pollution was the worst along the G102 motorway. Heavy metal emissions varied in different regions and directions. Temporal changes significantly influenced the heavy metals accumulated in moss bags, with low deposition of most elements observed at nearly all sampling sites in summer. Different seasons and regions were important factors affecting atmospheric heavy metal pollution. Based on the correlation analysis and the positive matric factorization model, the results revealed that heavy metals in moss bags in Xichang were mainly derived from anthropogenic sources and atmospheric deposition. Overall, this research provides an important reference for air pollution monitoring in urban areas.


Subject(s)
Air Pollutants , Bryophyta , Metals, Heavy , Air Pollutants/analysis , Biological Monitoring , Environmental Monitoring/methods , Humans , Metals, Heavy/analysis
6.
Chemosphere ; 283: 131031, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34134043

ABSTRACT

Photosynthetic bacteria have flexible metabolisms and strong environmental adaptability, and require cheap, but plentiful, energy supplements, which all enable their use in Cr(VI)-remediation. In this study, the effects of culture conditions on the total Cr removal rate were investigated for a newly identified strain of Rhodobacter sphaeroides SC01. The subcellular distribution and Cr(VI) reduction ability of four different cellular fractions were evaluated by scanning electron microscopy and transmission electron microscopy. Experiments indicated that the optimal culture conditions for total Cr removal included a culture temperature of 35 °C, pH of 7.20, an NaCl concentration of 5 g L-1, a light intensity of 4000 lx, and an initial cell concentration (OD680) of 0.15. In addition, most Cr was found in the cell membrane in the form of Cr (III) after reduction, while cell membranes had the highest Cr(VI) reduction rate (99%) compared to other cellular components. In addition, the physical and chemical properties of SC01 cells were characterized by FTIR, XPS, and XRD analyses, confirming that Cr was successfully absorbed on bacterial cell surfaces. CrPO4‧6H2O and Cr5(P3O10)3 precipitates were particularly identified by XRD analysis. After screening supplementation with five phosphor salts, Cr(VI) reduction due to bioprecipitation was improved by the addition of Na4P2O7 and (NaPO3)6 salts, with the Cr(VI)-reduction rate combined with Na4P2O7 addition being 15% higher than that of the control. Thus, this study proposes a new Cr(VI)-removal strategy based on the combined use of photosynthetic bacteria and phosphor salts, which importantly increases its potential application in treating wastewater.


Subject(s)
Chromium , Water Pollutants, Chemical , Bacteria , Chromium/analysis , Dietary Supplements , Hydrogen-Ion Concentration , Salts , Wastewater
7.
Int J Mol Sci ; 21(4)2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32059402

ABSTRACT

Salicylic acid (SA) is considered to play an important role in plant responses to environmental stresses. However, the detailed protective mechanisms in photosynthesis are still unclear. We therefore explored the protective roles of SA in photosystem II (PSII) in Arabidopsis thaliana under high light. The results demonstrated that 3 h of high light exposure resulted in a decline in photochemical efficiency and the dissipation of excess excitation energy. However, SA application significantly improved the photosynthetic capacity and the dissipation of excitation energy under high light. Western blot analysis revealed that SA application alleviated the decrease in the levels of D1 and D2 protein and increased the amount of Lhcb5 and PsbS protein under high light. Results from photoinhibition highlighted that SA application could accelerate the repair of D1 protein. Furthermore, the phosphorylated levels of D1 and D2 proteins were significantly increased under high light in the presence of SA. In addition, we found that SA application significantly alleviated the disassembly of PSII-LHCII super complexes and LHCII under high light for 3 h. Overall, our findings demonstrated that SA may efficiently alleviate photoinhibition and improve photoprotection by dissipating excess excitation energy, enhancing the phosphorylation of PSII reaction center proteins, and preventing the disassembly of PSII super complexes.


Subject(s)
Arabidopsis/metabolism , Light/adverse effects , Photosystem II Protein Complex/drug effects , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/radiation effects , Protective Agents/pharmacology , Salicylic Acid/pharmacology , Arabidopsis Proteins/metabolism , Chlorophyll/metabolism , Chlorophyll Binding Proteins/metabolism , Chloroplasts/ultrastructure , Light-Harvesting Protein Complexes/metabolism , Photosynthesis , Photosynthetic Reaction Center Complex Proteins , Photosystem I Protein Complex , Protective Agents/metabolism , Protein Kinases/metabolism , Salicylic Acid/metabolism , Thylakoids/metabolism
8.
Front Plant Sci ; 9: 1811, 2018.
Article in English | MEDLINE | ID: mdl-30619393

ABSTRACT

It has been known that PSI and PSII supercomplexes are involved in the linear and cyclic electron transfer, dynamics of light capture, and the repair cycle of PSII under environmental stresses. However, evolutions of photosystem (PS) complexes from evolutionarily divergent species are largely unknown. Here, we improved the blue native polyacrylamide gel electrophoresis (BN-PAGE) separation method and successfully separated PS complexes from all terrestrial plants. It is well known that reversible D1 protein phosphorylation is an important protective mechanism against oxidative damages to chloroplasts through the PSII photoinhibition-repair cycle. The results indicate that antibody-detectable phosphorylation of D1 protein is the latest event in the evolution of PS protein phosphorylation and occurs exclusively in seed plants. Compared to angiosperms, other terrestrial plant species presented much lower contents of PS supercomplexes. The amount of light-harvesting complexes II (LHCII) trimers was higher than that of LHCII monomers in angiosperms, whereas it was opposite in gymnosperms, pteridophytes, and bryophytes. LHCII assembly may be one of the evolutionary characteristics of vascular plants. In vivo chloroplast fluorescence measurements indicated that lower plants (bryophytes especially) showed slower changes in state transition and nonphotochemical quenching (NPQ) in response to light shifts. Therefore, the evolution of PS supercomplexes may be correlated with their acclimations to environments.

9.
Chemosphere ; 194: 220-228, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29207354

ABSTRACT

We systematically compared the impacts of four Cr salts (chromic chloride, chromic nitrate, potassium chromate and potassium bichromate) on physiological parameters and chlorophyll fluorescence in indigenous moss Taxiphyllum taxirameum. Among the four Cr salts, K2Cr2O7 treatment resulted in the most significant decrease in photosynthetic efficiency and antioxidant enzymes, increase in reactive oxygen species (ROS), and obvious cell death. Different form the higher plants, although hexavalent Cr(VI) salt treatments resulted in higher accumulation levels of Cr and were more toxic than Cr(III) salts, Cr(III) also induced significant changes in moss physiological parameters and chlorophyll fluorescence. Our results showed that Cr(III) and Cr(VI) could be monitored distinguishably according to the non-photochemical quenching (NPQ) fluorescence of sporadic purple and sporadic lavender images respectively. Then, the valence states and concentrations of Cr contaminations could be evaluated according to the image of maximum efficiency of PSII photochemistry (Fv/Fm) and the quantum yield of PSII electron transport (ΦPSII). Therefore, this study provides new ideas of moss's sensibility to Cr(III) and a new method to monitor Chromium contaminations rapidly and non-invasively in water.


Subject(s)
Bryophyta/chemistry , Chromium/analysis , Environmental Monitoring/methods , Fluorescence , Antioxidants/metabolism , Bryophyta/metabolism , Chlorophyll/chemistry , Electron Transport , Photosystem II Protein Complex/chemistry , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL