Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2402921, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822715

ABSTRACT

The development of smart systems for pesticidal delivery presents a significant advancement in enhancing the utilization efficiency of pesticides and mitigating environmental risks. Here an acid-responsive pesticidal delivery system using microspheres formed by the self-assembly of halloysite clay nanotubes (HNTs) is proposed. Insecticide avermectin (AVM) and herbicide prometryn (PMT) are used as two models of hydrophobic pesticide and encapsulated within the porous microspheres, followed by a coating of tannic acid/iron (TA/FeIII) complex films to generate two controlled-release pesticides, named as HCEAT and HCEPT, resulting in the loading capacity of AVM and PMT being 113.3 and 120.3 mg g-1, respectively. Both HCEAT and HCEPT exhibit responsiveness to weak acid, achieving 24 h-release ratios of 85.8% and 80.5% at a pH of 5.5. The experiment and simulation results indicate that the coordination interaction between EDTA2- and Ca2+ facilitates the spherical aggregation of HNTs. Furthermore, these novel pesticide formulations demonstrate better resistance against ultraviolet (UV) irradiation, higher foliar affinity, and less leaching effect, with negligible impact of the carrier material on plants and terrestrial organisms. This work presents a promising approach toward the development of efficient and eco-friendly pesticide formulations, greatly contributing to the sustainable advancement of agriculture.

2.
Small ; 20(9): e2306530, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37803923

ABSTRACT

In this study, a three-step strategy including electrochemical cathode deposition, self-oxidation, and hydrothermal reaction is applied to prepare the LiMn2 O4 nanosheets on carbon cloth (LMOns@CC) as a binder-free cathode in a hybrid capacitive deionization (CDI) cell for selectively extracting lithium from salt-lake brine. The binder-free LMOns@CC electrodes are constructed from dozens of 2D LiMn2 O4 nanosheets on carbon cloth substrates, resulting in a uniform 2D array of highly ordered nanosheets with hierarchical nanostructure. The charge/discharge process of the LMOns@CC electrode demonstrates that visible redox peaks and high pseudocapacitive contribution rates endow the LMOns@CC cathode with a maximum Li+ ion electrosorption capacity of 4.71 mmol g-1 at 1.2 V. Moreover, the LMOns@CC electrode performs outstanding cycling stability with a high-capacity retention rate of 97.4% and a manganese mass dissolution rate of 0.35% over ten absorption-desorption cycles. The density functional theory (DFT) theoretical calculations verify that the Li+ selectivity of the LMOns@CC electrode is attributed to the greater adsorption energy of Li+ ions than other ions. Finally, the selective extraction performance of Li+ ions in natural Tibet salt lake brine reveals that the LMOns@CC has selectivity ( α Mg 2 + Li + $\alpha _{{\mathrm{Mg}}^{2 + }}^{{\mathrm{Li}}^ + }$ = 7.48) and excellent cycling stability (100 cycles), which would make it a candidate electrode for lithium extraction from salt lakes.

3.
J Hazard Mater ; 431: 128591, 2022 06 05.
Article in English | MEDLINE | ID: mdl-35247739

ABSTRACT

90Sr-containing radioactive wastewater during Fukushima nuclear accident (FNA) aroused extensive consideration for its disposal. Massive coexisted Na+ ions seriously inhibited Sr2+ removal, aggravating the expenditure of radioactive wastewater treatment. Herein, a chestnut shell derived porous carbon material modified with aryl diazonium salt (ADS) of sodium 4-aminoazobenzene-4'-sulfonate (SPAC) was developed as capacitive deionization electrode for selective removal of Sr2+ from saliferous radioactive wastewater. Based on ADS modification, the Sr2+ electrosorption capacity of SPAC electrode was improved to 33.11 mg g-1 with fast ion removal rate of 2.89 mg g-1 min-1, comparing with only 16.10 mg g-1 before modification. The isothermal adsorption and kinetics by SPAC electrode fitted well with Langmuir and pseudo-second-order model, achieving a maximum Sr2+ electrosorption capacity of 58.21 mg g-1, superior cycling stability, and excellent charge efficiency (77.63%). Fascinatingly, the SPAC electrode exhibited superhigh Sr2+ selectivity of 70.65 against Na+ in Na+-Sr2+ mixed solution with molar ratio of Na+:Sr2+ as 20:1. Density functional theory (DFT) simulation, combining with electrochemical and spectral analyses, revealed that the high overlap of electron cloud between Sr2+ ion and anionic sulfonic group (-SO3-) provided SPAC with remarkable selectivity of Sr2+ ion, and illustrated the ion-swapping mechanism of Sr2+ selectivity.


Subject(s)
Wastewater , Water Purification , Adsorption , Carbon , Electrodes , Ions
SELECTION OF CITATIONS
SEARCH DETAIL
...