Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
JCI Insight ; 8(2)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36480289

ABSTRACT

SMA with respiratory distress type 1 (SMARD1) and Charcot-Marie-Tooth type 2S (CMT2S) are results of mutations in immunoglobulin mu DNA binding protein 2 (IGHMBP2). IGHMBP2 is a UPF1-like helicase with proposed roles in several cellular processes, including translation. This study examines activator of basal transcription 1 (ABT1), a modifier of SMARD1-nmd disease pathology. Microscale thermophoresis and dynamic light scattering demonstrate that IGHMBP2 and ABT1 proteins directly interact with high affinity. The association of ABT1 with IGHMBP2 significantly increases the ATPase and helicase activity as well as the processivity of IGHMBP2. The IGHMBP2/ABT1 complex interacts with the 47S pre-rRNA 5' external transcribed spacer and U3 small nucleolar RNA (snoRNA), suggesting that the IGHMBP2/ABT1 complex is important for pre-rRNA processing. Intracerebroventricular injection of scAAV9-Abt1 decreases FVB-Ighmbp2nmd/nmd disease pathology, significantly increases lifespan, and substantially decreases neuromuscular junction denervation. To our knowledge, ABT1 is the first disease-modifying gene identified for SMARD1. We provide a mechanism proposing that ABT1 decreases disease pathology in FVB-Ighmbp2nmd/nmd mutants by optimizing IGHMBP2 biochemical activity (ATPase and helicase activity). Our studies provide insight into SMARD1 pathogenesis, suggesting that ABT1 modifies IGHMBP2 activity as a means to regulate pre-rRNA processing.


Subject(s)
DNA-Binding Proteins , Transcription Factors , Humans , Adenosine Triphosphatases , DNA-Binding Proteins/genetics , RNA Helicases , RNA Precursors , Trans-Activators , Transcription Factors/genetics , Nuclear Proteins/metabolism , TATA-Binding Protein Associated Factors/metabolism
2.
mSystems ; 7(4): e0033622, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35862801

ABSTRACT

Opioid drugs are commonly prescribed analgesic to pregnant women. Direct exposure to such drugs may slow gut motility, alter gut permeability, and affect the gut microbiome. While such drugs affect gut microbiome in infants, no study to date has determined whether developmental exposure to such drugs results in longstanding effects on gut microbiota and correspondingly on host responses. We hypothesized developmental exposure to oxycodone (OXY) leads to enduring effects on gut microbiota and such changes are associated with adult neurobehavioral and metabolic changes. Female mice were treated daily with 5 mg OXY/kg or saline solution (control [CTL]) for 2 weeks prior to breeding and then throughout gestation. Male and female offspring pups were weaned, tested with a battery of behavioral and metabolic tests, and fecal boli were collected adulthood (120 days of age). In females, relative abundance of Butyricimonas spp., Bacteroidetes, Anaeroplasma spp., TM7, Enterococcus spp., and Clostridia were greater in OXY versus CTL individuals. In males, relative abundance of Coriobacteriaceae, Roseburia spp., Sutterella spp., and Clostridia were elevated in OXY exposed individuals. Bacterial changes were also associated with predictive metabolite pathway alterations that also varied according to sex. In males and females, affected gut microbiota correlated with metabolic but not behavioral alterations. The findings suggest that developmental exposure to OXY leads to lasting effects on adult gut microbiota that might affect host metabolism, possibly through specific bacterial metabolites or other bacterial-derived products. Further work is needed to characterize how developmental exposure to OXY affects host responses through the gut microbiome. IMPORTANCE This is the first work to show in a rodent model that in utero exposure to an opioid drug can lead to longstanding effects on the gut microbiota when examined at adulthood. Further, such bacterial changes are associated with metabolic host responses. Given the similarities between rodent and human microbiomes, it raises cause for concern that similar effects may become evident in children born to mothers taking oxycodone and other opioid drugs.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Adult , Child , Male , Female , Animals , Mice , Pregnancy , Oxycodone/adverse effects , Analgesics, Opioid/adverse effects , Social Behavior , Bacteria
3.
Hum Mol Genet ; 31(8): 1293-1307, 2022 04 22.
Article in English | MEDLINE | ID: mdl-34726235

ABSTRACT

Spinal muscular atrophy with respiratory distress type I (SMARD1) is a neurodegenerative disease defined by respiratory distress, muscle atrophy and sensory and autonomic nervous system defects. SMARD1 is a result of mutations within the IGHMBP2 gene. We have generated six Ighmbp2 mouse models based on patient-derived mutations that result in SMARD1 and/or Charcot-Marie Tooth Type 2 (CMT2S). Here we describe the characterization of one of these models, Ighmbp2D564N (human D565N). The Ighmbp2D564N/D564N mouse model mimics important aspects of the SMARD1 disease phenotype, including motor neuron degeneration and muscle atrophy. Ighmbp2D564N/D564N is the first SMARD1 mouse model to demonstrate respiratory defects based on quantified plethysmography analyses. SMARD1 disease phenotypes, including the respiratory defects, are significantly diminished by intracerebroventricular (ICV) injection of ssAAV9-IGHMBP2 and the extent of phenotypic restoration is dose-dependent. Collectively, this model provides important biological insight into SMARD1 disease development.


Subject(s)
Muscular Atrophy, Spinal , Neurodegenerative Diseases , Animals , DNA-Binding Proteins/genetics , Disease Models, Animal , Humans , Mice , Muscular Atrophy , Muscular Atrophy, Spinal/genetics , Mutation , Respiratory Distress Syndrome, Newborn , Transcription Factors/genetics
4.
Epigenomics ; 13(24): 1909-1919, 2021 12.
Article in English | MEDLINE | ID: mdl-34841895

ABSTRACT

Aim: To determine small RNA expression changes in mouse placenta induced by bisphenol A (BPA) exposure. Methods: Exposing female mice to BPA two weeks prior to conception through gestational day 12.5; whereupon fetal placentas were collected, frozen in liquid nitrogen and stored at -80°C. Small RNAs were isolated and used for small RNA-sequencing. Results: 43 small RNAs were differentially expressed. Target mRNAs were closely aligned to those expressed by thymus and brain, and pathway enrichment analyses indicated that such target mRNAs regulate neurogenesis and associated neurodevelopment processes. Conclusions: BPA induces several small RNAs in mouse placenta that might provide biomarkers for BPA exposure. Further, the placenta might affect fetal brain development through the secretion of miRNAs.


Subject(s)
Endocrine Disruptors , MicroRNAs , Animals , Benzhydryl Compounds/toxicity , Female , Humans , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Phenols/toxicity , Placenta/metabolism , Pregnancy
5.
Bone Rep ; 15: 101147, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34820485

ABSTRACT

Bisphenol-A (BPA) and bisphenol-S (BPS) are endocrine disrupting chemicals (EDCs) found primarily in plastics. Estrogen is a primary hormonal regulator of skeletal growth and development; however, the impact of gestational BPA or BPS exposure on skeletal health of offspring remains relatively unknown. Here, adult female mice were randomized into three treatment groups: 200 µg BPA/kg BW (BPA), 200 µg BPS/kg BW (BPS) or control (CON). Animals were then further randomized to exercising (EX) or sedentary (SED) groups. Treatment continued through mating, gestation, and lactation. One male offspring from each dam (n = 6-8/group) was assessed at 16 weeks of age to evaluate effects of EDC exposure on the adult skeleton. Cortical geometry of the mid-diaphysis and trabecular microarchitecture of the distal femur were assessed via micro-CT. Biomechanical strength and mineral apposition rate of the femoral diaphysis were assessed via three-point bending and dynamic histomorphometry, respectively. Two-factor ANOVA or ANCOVA were used to determine the effects of maternal EX and BPA or BPS on trabecular and cortical bone outcomes. Maternal EX led to a significant decrease in body fat percentage and bone stiffness, independent of EDC exposure. Offspring exposed to BPA had significantly lower trabecular bone volume, trabecular number, connectivity density, cortical thickness, and greater trabecular spacing compared to BPS or CON animals. In conclusion, gestational BPA, but not BPS, exposure negatively impacted trabecular microarchitecture and cortical geometry in adult male offspring. If these findings translate to humans, this could have significant public health impacts on expecting women or those seeking to become pregnant.

6.
Bone Rep ; 15: 101136, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34632005

ABSTRACT

Bisphenol-A (BPA) and bisphenol-S (BPS) are estrogen disrupting chemicals (EDCs) found in the environment and common household items. Estrogen is a primary hormonal regulator of bone growth and development; however, the impact of gestational BPA or BPS exposure on skeletal health of offspring remains relatively unknown. In this longitudinal study, adult female mice were randomized into three groups: 200 µg BPA/kg BW (BPA), 200 µg BPS/kg BW (BPS) or control (CON). Animals in each group were further randomized to exercise treatment (EX) or sedentary (SED) control, resulting in six overall groups. BPA/BPS/CON and EX/SED treatment were initiated prior to mating and continued through mating, gestation, and lactation. One female offspring from each dam (n = 6/group) was assessed at 17 weeks of age to evaluate effects of EDC exposure on the adult skeleton. Cortical geometry of the mid-diaphysis and trabecular microarchitecture of the distal femur were assessed via micro-computed tomography. Biomechanical strength and mineral apposition rate of the femoral diaphysis were assessed via three-point bending and dynamic histomorphometry, respectively. Sclerostin expression was measured using immunohistochemistry. Two-factor ANOVA or ANCOVA were used to determine the effects of maternal exercise and BPA or BPS exposure on trabecular and cortical bone outcomes, respectively. Consistent with prior studies, there were no significant differences in body weight, femoral length, cortical geometry, trabecular microarchitecture, or biomechanical strength between groups in female offspring. In conclusion, gestational BPA exposure and maternal exercise have minimal impact on skeletal outcomes in female adult offspring.

7.
Placenta ; 115: 158-168, 2021 11.
Article in English | MEDLINE | ID: mdl-34649169

ABSTRACT

INTRODUCTION: The mouse placenta accumulates and possibly produces serotonin (5-hydroxytryptamine; 5-HT) in parietal trophoblast giant cells (pTGC) located at the interface between the placenta and maternal deciduum. However, the roles of 5-HT in placental function are unclear. This lack of information is unfortunate, given that selective serotonin-reuptake inhibitors are commonly used to combat depression in pregnant women. The high affinity 5-HT transporter SLC6A4 (also known as SERT) is the target of such drugs and likely controls much of 5-HT uptake into pTGC and other placental cells. We hypothesized that ablation of the Slc6a4 gene would result in morphological changes correlated with placental gene expression changes, especially for those involved in nutrient acquisition and metabolism, and thereby, provide insights into 5-HT placental function. METHODS: Placentas were collected at embryonic age (E) 12.5 from Slc6a4 knockout (KO) and wild-type (WT) conceptuses. Histological analyses, RNAseq, qPCR, and integrative correlation analyses were performed. RESULTS: Slc6a4 KO placentas had a considerable increased pTGC to spongiotrophoblast area ratio relative to WT placentas and significantly elevated expression of genes associated with intestinal functions, including nutrient sensing, uptake, and catabolism, and blood clotting. Integrative correlation analyses revealed upregulation of many of these genes was correlated with pTGC layer expansion. One other key gene was dopa decarboxylase (Ddc), which catalyzes conversion of L-5-hydroxytryptophan to 5-HT. DISCUSSION: Our studies possibly suggest a new paradigm relating to how 5-HT operates in the placenta, namely as a factor regulating metabolic functions and blood coagulation. We further suggest that pTGC might be functional analogs of enterochromaffin 5-HT-positive cells of the intestinal mucosa, which regulate similar activities within the gut. Further work, including proteomics and metabolomic studies, are needed to buttress our hypothesis.


Subject(s)
Placenta/physiology , Serotonin Plasma Membrane Transport Proteins/deficiency , Serotonin/physiology , Animals , Dopa Decarboxylase/genetics , Dopa Decarboxylase/metabolism , Female , Giant Cells/physiology , Intestines/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Placenta/chemistry , Placenta/cytology , Pregnancy , RNA/analysis , Sequence Analysis, RNA , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/physiology , Trophoblasts/cytology , Up-Regulation
8.
Biol Reprod ; 105(5): 1126-1139, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34344022

ABSTRACT

Histone proteins undergo various modifications that alter chromatin structure, including addition of methyl groups. Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that methylates lysine residue 27, and thereby suppresses gene expression. EZH2 plays integral roles in the uterus and other reproductive organs. We have previously shown that conditional deletion of uterine EZH2 results in increased proliferation of luminal and glandular epithelial cells, and RNA-seq analyses reveal several uterine transcriptomic changes in Ezh2 conditional (c) knockout (KO) mice that can affect estrogen signaling pathways. To pinpoint the origin of such gene expression changes, we used the recently developed spatial transcriptomics (ST) method with the hypotheses that Ezh2cKO mice would predominantly demonstrate changes in epithelial cells and/or ablation of this gene would disrupt normal epithelial/stromal gene expression patterns. Uteri were collected from ovariectomized adult WT and Ezh2cKO mice and analyzed by ST. Asb4, Cxcl14, Dio2, and Igfbp5 were increased, Sult1d1, Mt3, and Lcn2 were reduced in Ezh2cKO uterine epithelium vs. WT epithelium. For Ezh2cKO uterine stroma, differentially expressed key hub genes included Cald1, Fbln1, Myh11, Acta2, and Tagln. Conditional loss of uterine Ezh2 also appears to shift the balance of gene expression profiles in epithelial vs. stromal tissue toward uterine epithelial cell and gland development and proliferation, consistent with uterine gland hyperplasia in these mice. Current findings provide further insight into how EZH2 may selectively affect uterine epithelial and stromal compartments. Additionally, these transcriptome data might provide mechanistic understanding and valuable biomarkers for human endometrial disorders with epigenetic underpinnings.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/genetics , Mice/genetics , Transcriptome , Uterus/metabolism , Animals , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , Gene Expression Profiling , Mice/metabolism , Mice, Knockout
9.
eNeuro ; 8(4)2021.
Article in English | MEDLINE | ID: mdl-34312305

ABSTRACT

Opioid drugs are increasingly being prescribed to pregnant women. Such compounds can also bind and activate opioid receptors in the fetal brain, which could lead to long-term brain and behavioral disruptions. We hypothesized that maternal treatment with oxycodone (OXY), the primary opioid at the center of the current crisis, leads to later neurobehavioral disorders and gene expression changes in the hypothalamus and hippocampus of resulting offspring. Female mice were treated daily with 5 mg OXY/kg or saline solution (control; CTL) for two weeks before breeding and then throughout gestation. Male and female offspring from both groups were tested with a battery of behavioral and metabolic tests to measure cognition, exploratory-like, anxiety-like, voluntary physical activity, and socio-communication behaviors. qPCR analyses were performed for candidate gene expression patterns in the hypothalamus and hippocampus of OXY and CTL derived offspring. Developmental exposure to OXY caused socio-communication changes that persisted from weaning through adulthood. Such offspring also showed cognitive impairments, reduced voluntary physical activity, and weighed more than CTL counterparts. In the hippocampus, prenatal exposure to OXY caused sex-dependent differences in expression of genes encoding opioid receptors and those involved in serotonin signaling. OXY exposure induced changes in neuropeptide hormone expression and the epigenetic modulator, Dnmt3a, in the hypothalamus, which could result in epigenetic changes in this brain region. The findings suggest cause for concern that consumption of OXY by pregnant mothers may result in permanent neurobehavioral changes in their offspring. Further work is needed to determine the potential underpinning epigenetic mechanisms.


Subject(s)
Oxycodone , Prenatal Exposure Delayed Effects , Animals , Anxiety , Epigenesis, Genetic , Female , Hippocampus , Hypothalamus , Male , Mice , Oxycodone/adverse effects , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/genetics
10.
Animals (Basel) ; 11(4)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33921134

ABSTRACT

RIPs have been developed as effective genetic markers and popularly applied for genetic analysis in plants, but few reports are available for domestic animals. Here, we established 30 new molecular markers based on the SINE RIPs, and applied them for population genetic analysis in seven Chinese miniature pigs. The data revealed that the closed herd (BM-clo), inbreeding herd (BM-inb) of Bama miniature pigs were distinctly different from the BM-cov herds in the conservation farm, and other miniature pigs (Wuzhishan, Congjiang Xiang, Tibetan, and Mingguang small ear). These later five miniature pig breeds can further be classified into two clades based on a phylogenetic tree: one included BM-cov and Wuzhishan, the other included Congjiang Xiang, Tibetan, and Mingguang small ear, which was well-supported by structure analysis. The polymorphic information contents estimated by using SINE RIPs are lower than the predictions based on microsatellites. Overall, the genetic distances and breed-relationships between these populations revealed by 30 SINE RIPs generally agree with their evolutions and geographic distributions. We demonstrated the potential of SINE RIPs as new genetic markers for genetic monitoring and population structure analysis in pigs, which can even be extended to other livestock animals.

11.
Sci Rep ; 11(1): 6558, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33753813

ABSTRACT

Due to their antimicrobial properties, silver nanoparticles (AgNPs) are used in a wide range of consumer products that includes topical wound dressings, coatings for biomedical devices, and food-packaging to extend the shelf-life. Despite their beneficial antimicrobial effects, developmental exposure to such AgNPs may lead to gut dysbiosis and long-term health consequences in exposed offspring. AgNPs can cross the placenta and blood-brain-barrier to translocate in the brain of offspring. The underlying hypothesis tested in the current study was that developmental exposure of male and female mice to AgNPs disrupts the microbiome-gut-brain axis. To examine for such effects, C57BL6 female mice were exposed orally to AgNPs at a dose of 3 mg/kg BW or vehicle control 2 weeks prior to breeding and throughout gestation. Male and female offspring were tested in various mazes that measure different behavioral domains, and the gut microbial profiles were surveyed from 30 through 120 days of age. Our study results suggest that developmental exposure results in increased likelihood of engaging in repetitive behaviors and reductions in resident microglial cells. Echo-MRI results indicate increased body fat in offspring exposed to AgNPs exhibit. Coprobacillus spp., Mucispirillum spp., and Bifidobacterium spp. were reduced, while Prevotella spp., Bacillus spp., Planococcaceae, Staphylococcus spp., Enterococcus spp., and Ruminococcus spp. were increased in those developmentally exposed to NPs. These bacterial changes were linked to behavioral and metabolic alterations. In conclusion, developmental exposure of AgNPs results in long term gut dysbiosis, body fat increase and neurobehavioral alterations in offspring.


Subject(s)
Behavior/drug effects , Dysbiosis/drug therapy , Gastrointestinal Microbiome/drug effects , Metal Nanoparticles , Silver/adverse effects , Animals , Female , Humans , Male , Maze Learning , Mental Status and Dementia Tests , Metagenome , Metagenomics/methods , Metal Nanoparticles/chemistry , Mice , Models, Animal , Silver/chemistry
12.
Biol Reprod ; 104(1): 117-129, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33030211

ABSTRACT

The ubiquitin-proteasome system plays diverse regulatory and homeostatic roles in mammalian reproduction. Ubiquitin ligases are the substrate-specific mediators of ubiquitin-binding to its substrate proteins. The NEDD4-like ubiquitin ligase 2 (aliases NEDL2, HECW2) is a HECT-type ubiquitin ligase that contains one N-terminal HECW ubiquitin ligase domain, one C-terminal HECT ubiquitin ligase domain, one C2 domain, and two WW protein-protein interaction modules. Beyond its predicted ubiquitin-ligase activity, its cellular functions are largely unknown. Current studies were designed to investigate the content and distribution of NEDL2 in porcine spermatozoa, oocytes, zygotes, and early preimplantation embryos, and in cumulus cells before and after in vitro maturation with oocytes, and fibroblast cells as positive control by western blot and immunocytochemistry, and to examine its roles during oocyte fertilization. Multiple isoforms of NEDL2 were identified by WB. One at approximately 52 kDa was detected only in the germinal vesicle (GV) stage and metaphase II oocytes, and in early preimplantation embryos. Other isoforms were high mass bands at 91, 136, and 155 kDa, which were only detected in somatic cells. Interestingly, ejaculated spermatozoa prominently displayed the same 52 kDa band as oocytes; they also had two minor bands of 74 and 129 kDa, which were not detected in somatic cells or oocytes. By immunofluorescence, NEDL2 showed a diffused cytoplasmic localization in all cell types and accumulated in distinct foci in the germinal vesicles (GVs) of immature oocytes, in maternal and paternal pronuclei of zygotes and nuclei of embryo blastomeres and somatic cells. In blastocysts, the labeling intensity of NEDL2 was stronger in the inner cell mass than in trophoblast, indicating higher NEDL2 content in the ICM cells than in trophectoderm. NEDL2 abundance was 10 times higher in post-maturation oocyte-surrounding cumulus cells than that of cumulus cells before in vitro maturation with hormones, indicating that NEDL2 may have a unique role in cumulus cells after ovulation. Microinjection of anti-NEDL2 antibody into oocyte before IVF did not affect the percentage of oocytes fertilized, percentage of oocytes cleaved, or blastocyst formation. However, the anti-NEDL2 antibody decreased the number of pronuclei, accelerated the formation of nuclear precursor bodies at 6 h postfertilization, inhibited sperm DNA decondensation, and resulted in more fertilized oocytes without male pronuclear formation. In summary, NEDL2 may play a key role during fertilization, especially during sperm DNA decondensation.


Subject(s)
Blastocyst/metabolism , Fertilization/physiology , Oocytes/metabolism , Spermatozoa/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Nucleus/metabolism , Cumulus Cells/metabolism , Cytoplasm/metabolism , Female , Fibroblasts/metabolism , Male , Oogenesis/physiology , Swine
13.
Horm Behav ; 128: 104890, 2021 02.
Article in English | MEDLINE | ID: mdl-33221288

ABSTRACT

Developmental exposure to endocrine disrupting chemicals (EDCs), e.g., bisphenol A (BPA) or genistein (GEN), causes longstanding epigenome effects. MicroRNAs (miRs) regulate which mRNAs will be translated to proteins and thereby serve as the final checkpoint in epigenetic control. Scant amount is known, however, whether EDCs affect neural miRNA (miR) patterns. We aimed to test the hypothesis that developmental exposure of California mice (Peromyscus californicus) to GEN, BPA, or both chemicals influences hypothalamic miR/small RNA profiles and ascertain the extent such biomolecular alterations correlate with behavioral and metabolic changes. California mice were developmentally exposed to GEN (250 mg/kg feed weight, FW), GEN (250 mg/kg FW)+BPA (5 mg/kg FW), low dose (LD) BPA (5 mg/kg FW), or upper dose (UD) BPA (50 mg/kg FW). Adult offspring were tested in a battery of behavioral and metabolic tests; whereupon, mice were euthanized, brains were collected and frozen, small RNAs were isolated from hypothalamic punches, and subsequently sequenced. California mice exposed to one or both EDCs engaged in one or more repetitive behaviors. GEN, LD BPA, and UD BPA altered aspects of ultrasonic and audible vocalizations. Each EDC exposure led to sex-dependent differences in differentially expressed miR/small RNAs with miR7-2, miR146, and miR148a being increased in all female and male EDC exposed groups. Current findings reveal that developmental exposure to GEN and/or BPA affects hypothalamic miR/small RNA expression patterns, and such changes correlate with EDC-induced behavioral and metabolic alterations. miR146 is likely an important mediator and biomarker of EDC exposure in mammals, including humans.


Subject(s)
Endocrine Disruptors , MicroRNAs , Animals , Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Female , Hypothalamus , Male , Mice , MicroRNAs/genetics , Peromyscus , Sex Characteristics
14.
Placenta ; 100: 96-110, 2020 10.
Article in English | MEDLINE | ID: mdl-32891007

ABSTRACT

INTRODUCTION: Pregnant women are increasingly being prescribed and abusing opioid drugs. As the primary communication organ between mother and conceptus, the placenta may be vulnerable to opioid effects but also holds the key to better understanding how these drugs affect long-term offspring health. We hypothesized that maternal treatment with oxycodone (OXY), the primary opioid at the center of the current crisis, deleteriously affects placental structure and gene expression patterns. METHODS: Female mice were treated daily with 5 mg OXY/kg or saline solution (Control, CTL) for two weeks prior to breeding and until placenta were collected at embryonic age 12.5. A portion of the placenta was fixed for histology, and the remainder was frozen for RNA isolation followed by RNAseq. RESULTS: Maternal OXY treatment reduced parietal trophoblast giant cell (pTGC) area and decreased the maternal blood vessel area within the labyrinth region. OXY exposure affected placental gene expression profiles in a sex dependent manner with female placenta showing up-regulation of many placental enriched genes, including Ceacam11, Ceacam14, Ceacam12, Ceacam13, Prl7b1, Prl2b1, Ctsq, and Tpbpa. In contrast, placenta of OXY exposed males had alteration of many ribosomal proteins. Weighted correlation network analysis revealed that in OXY female vs. CTL female comparison, select modules correlated with OXY-induced placental histological changes. Such associations were lacking in the male OXY vs. CTL male comparison. DISCUSSION: Results suggest OXY exposure alters placental histology. In response to OXY exposure, female placenta responds by upregulating placental enriched transcripts that are either unchanged or downregulated in male placenta. Such changes may shield female offspring from developmental origins of health and disease-based diseases.


Subject(s)
Analgesics, Opioid/adverse effects , Oxycodone/adverse effects , Placenta/drug effects , Animals , Female , Male , Mice , Placenta/metabolism , Pregnancy , Pregnancy Rate , Sex Ratio , Transcriptome/drug effects
16.
Reprod Toxicol ; 98: 29-60, 2020 12.
Article in English | MEDLINE | ID: mdl-32682780

ABSTRACT

"Consortium Linking Academic and Regulatory Insights on BPA Toxicity" (CLARITY-BPA) was a comprehensive "industry-standard" Good Laboratory Practice (GLP)-compliant 2-year chronic exposure study of bisphenol A (BPA) toxicity that was supplemented by hypothesis-driven independent investigator-initiated studies. The investigator-initiated studies were focused on integrating disease-associated, molecular, and physiological endpoints previously found by academic scientists into an industry standard guideline-compliant toxicity study. Thus, the goal of this collaboration was to provide a more comprehensive dataset upon which to base safety standards and to determine whether industry-standard tests are as sensitive and predictive as molecular and disease-associated endpoints. The goal of this report is to integrate the findings from the investigator-initiated studies into a comprehensive overview of the observed impacts of BPA across the multiple organs and systems analyzed. For each organ system, we provide the rationale for the study, an overview of methodology, and summarize major findings. We then compare the results of the CLARITY-BPA studies across organ systems with the results of previous peer-reviewed studies from independent labs. Finally, we discuss potential influences that contributed to differences between studies. Developmental exposure to BPA can lead to adverse effects in multiple organs systems, including the brain, prostate gland, urinary tract, ovary, mammary gland, and heart. As published previously, many effects were at the lowest dose tested, 2.5µg/kg /day, and many of the responses were non-monotonic. Because the low dose of BPA affected endpoints in the same animals across organs evaluated in different labs, we conclude that these are biologically - and toxicologically - relevant.


Subject(s)
Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Maternal-Fetal Exchange , Phenols/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Animals , Behavior, Animal/drug effects , DNA Methylation , Female , Gene Expression Regulation, Developmental/drug effects , Heart/drug effects , Heart/growth & development , Male , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/growth & development , Ovary/drug effects , Ovary/growth & development , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Prostate/drug effects , Prostate/growth & development , Rats, Sprague-Dawley , Reproducibility of Results , Thyroid Gland/drug effects , Thyroid Gland/growth & development , Urethra/drug effects , Urethra/growth & development
17.
Sci Rep ; 10(1): 10902, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32616744

ABSTRACT

Xenoestrogens are chemicals found in plant products, such as genistein (GEN), and in industrial chemicals, e.g., bisphenol A (BPA), present in plastics and other products that are prevalent in the environment. Early exposure to such endocrine disrupting chemicals (EDC) may affect brain development by directly disrupting neural programming and/or through the microbiome-gut-brain axis. To test this hypothesis, California mice (Peromyscus californicus) offspring were exposed through the maternal diet to GEN (250 mg/kg feed weight) or BPA (5 mg/kg feed weight, low dose- LD or 50 mg/kg, upper dose-UD), and dams were placed on these diets two weeks prior to breeding, throughout gestation, and lactation. Various behaviors, gut microbiota, and fecal metabolome were assessed at 90 days of age. The LD but not UD of BPA exposure resulted in individuals spending more time engaging in repetitive behaviors. GEN exposed individuals were more likely to exhibit such behaviors and showed socio-communicative disturbances. BPA and GEN exposed females had increased number of metabolites involved in carbohydrate metabolism and synthesis. Males exposed to BPA or GEN showed alterations in lysine degradation and phenylalanine and tyrosine metabolism. Current findings indicate cause for concern that developmental exposure to BPA or GEN might affect the microbiome-gut-brain axis.


Subject(s)
Benzhydryl Compounds/toxicity , Brain/drug effects , Dysbiosis/chemically induced , Endocrine Disruptors/toxicity , Gastrointestinal Microbiome/drug effects , Genistein/toxicity , Peromyscus/microbiology , Phenols/toxicity , Prenatal Exposure Delayed Effects , Animals , Autism Spectrum Disorder/chemically induced , Bacteria/drug effects , Bacteria/isolation & purification , Brain/embryology , Brain/growth & development , Diet , Disease Models, Animal , Feces/microbiology , Female , Lactation , Male , Maze Learning , Memory Disorders/chemically induced , Metabolome/drug effects , Peromyscus/embryology , Peromyscus/growth & development , Peromyscus/metabolism , Preconception Injuries/chemically induced , Pregnancy , Pregnancy Complications/chemically induced , Pregnancy Complications/microbiology , Social Behavior , Species Specificity , Vocalization, Animal
18.
J Neuroendocrinol ; 32(5): e12847, 2020 05.
Article in English | MEDLINE | ID: mdl-32297422

ABSTRACT

The hypothalamus and hippocampus are sensitive to early exposure to endocrine disrupting chemicals (EDCs). Two EDCs that have raised particular concerns are bisphenol A (BPA), a widely prevalent chemical in many common household items, and genistein (GEN), a phyto-oestrogen present in soy and other plants. We hypothesised that early exposure to BPA or GEN may lead to permanent effects on gene expression profiles for both coding RNAs (mRNAs) and microRNAs (miRs), which can affect the translation of mRNAs. Such EDC-induced biomolecular changes may affect behavioural and metabolic patterns. California mice (Peromyscus californicus) male and female offspring were developmentally exposed via the maternal diet to BPA (5 mg kg-1 feed weight low dose [LD] and 50 mg kg-1 feed weight upper dose [UD]), GEN (250 mg kg-1 feed weight) or a phyto-oestrogen-free diet (AIN) control. Behavioural and metabolic tests were performed at 180 days of age. A quantitative polymerase chain reacttion analysis was performed for candidate mRNAs and miRs in the hypothalamus and hippocampus. LD BPA and GEN exposed California mice offspring showed socio-communication impairments. Hypothalamic Avp, Esr1, Kiss1 and Lepr were increased in LD BPA offspring. miR-153 was elevated but miR-181a was reduced in LD BPA offspring. miR-9 and miR-153 were increased in the hippocampi of LD BPA offspring, whereas GEN decreased hippocampal miR-7a and miR-153 expression. Correlation analyses revealed neural expression of miR-153 and miR-181a was associated with socio-communication deficits in LD BPA individuals. The findings reveal a cause for concern such that developmental exposure of BPA or GEN in California mice (and potentially by translation in humans) can lead to long standing neurobehavioural consequences.


Subject(s)
Benzhydryl Compounds/pharmacology , Endocrine Disruptors/pharmacology , Gene Expression/drug effects , Genistein/pharmacology , Hippocampus/drug effects , Hypothalamus/drug effects , MicroRNAs/metabolism , Phenols/pharmacology , Animals , Behavior, Animal/drug effects , Hippocampus/metabolism , Hypothalamus/metabolism , MicroRNAs/genetics , Peromyscus
19.
Proc Natl Acad Sci U S A ; 117(9): 4642-4652, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32071231

ABSTRACT

Placental trophoblast cells are potentially at risk from circulating endocrine-disrupting chemicals, such as bisphenol A (BPA). To understand how BPA and the reputedly more inert bisphenol S (BPS) affect the placenta, C57BL6J mouse dams were fed 200 µg/kg body weight BPA or BPS daily for 2 wk and then bred. They continued to receive these chemicals until embryonic day 12.5, whereupon placental samples were collected and compared with unexposed controls. BPA and BPS altered the expression of an identical set of 13 genes. Both exposures led to a decrease in the area occupied by spongiotrophoblast relative to trophoblast giant cells (GCs) within the junctional zone, markedly reduced placental serotonin (5-HT) concentrations, and lowered 5-HT GC immunoreactivity. Concentrations of dopamine and 5-hydroxyindoleacetic acid, the main metabolite of serotonin, were increased. GC dopamine immunoreactivity was increased in BPA- and BPS-exposed placentas. A strong positive correlation between 5-HT+ GCs and reductions in spongiotrophoblast to GC area suggests that this neurotransmitter is essential for maintaining cells within the junctional zone. In contrast, a negative correlation existed between dopamine+ GCs and reductions in spongiotrophoblast to GC area ratio. These outcomes lead to the following conclusions. First, BPS exposure causes almost identical placental effects as BPA. Second, a major target of BPA/BPS is either spongiotrophoblast or GCs within the junctional zone. Third, imbalances in neurotransmitter-positive GCs and an observed decrease in docosahexaenoic acid and estradiol, also occurring in response to BPA/BPS exposure, likely affect the placental-brain axis of the developing mouse fetus.


Subject(s)
Benzhydryl Compounds/toxicity , Brain/drug effects , Endocrine Disruptors/toxicity , Phenols/toxicity , Sulfones/toxicity , Trophoblasts/drug effects , Animals , Dopamine/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Serotonin/metabolism , Trophoblasts/metabolism
20.
Genes Brain Behav ; 19(1): e12614, 2020 01.
Article in English | MEDLINE | ID: mdl-31605445

ABSTRACT

The underlying neurological events accompanying dog domestication remain elusive. To reconstruct the domestication process in an experimental setting, silver foxes (Vulpes vulpes) have been deliberately bred for tame vs aggressive behaviors for more than 50 generations at the Institute for Cytology and Genetics in Novosibirsk, Russia. The hypothalamus is an essential part of the hypothalamic-pituitary-adrenal axis and regulates the fight-or-flight response, and thus, we hypothesized that selective breeding for tameness/aggressiveness has shaped the hypothalamic transcriptomic profile. RNA-seq analysis identified 70 differentially expressed genes (DEGs). Seven of these genes, DKKL1, FBLN7, NPL, PRIMPOL, PTGRN, SHCBP1L and SKIV2L, showed the same direction expression differences in the hypothalamus, basal forebrain and prefrontal cortex. The genes differentially expressed across the three tissues are involved in cell division, differentiation, adhesion and carbohydrate processing, suggesting an association of these processes with selective breeding. Additionally, 159 transcripts from the hypothalamus demonstrated differences in the abundance of alternative spliced forms between the tame and aggressive foxes. Weighted gene coexpression network analyses also suggested that gene modules in hypothalamus were significantly associated with tame vs aggressive behavior. Pathways associated with these modules include signal transduction, interleukin signaling, cytokine-cytokine receptor interaction and peptide ligand-binding receptors (eg, G-protein coupled receptor [GPCR] ligand binding). Current studies show the selection for tameness vs aggressiveness in foxes is associated with unique hypothalamic gene profiles partly shared with other brain regions and highlight DEGs involved in biological processes such as development, differentiation and immunological responses. The role of these processes in fox and dog domestication remains to be determined.


Subject(s)
Aggression , Foxes/genetics , Hypothalamus/metabolism , Transcriptome , Animals , Foxes/physiology , Gene Regulatory Networks
SELECTION OF CITATIONS
SEARCH DETAIL
...