Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Plant Cell Environ ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39279496

ABSTRACT

Nitrogen (N) is crucial for plant growth and development. Exogenous dopamine has been shown to improve the N-deficiency tolerance of apple. However, the potential regulatory mechanisms by which dopamine mitigates low-N stress remain unclear. Our data indicated that the dopamine levels in apple (Malus domestica) were elevated by the overexpression (OE) of MdTYDC, which encodes tyrosine decarboxylase, a key enzyme in dopamine biosynthesis. The photosynthetic capacity of the OE lines was enhanced, and the root system was more extensive under low-N stress compared with the wild-type (WT) plants. This enhancement contributed to a greater net nitrate influx at the root surface in the OE lines compared with the WT. Transcriptomic and carbohydrate analyses suggested that the OE of MdTYDC in apple enhanced N-deficiency tolerance by promoting the expression of carbohydrate-related genes, which increased the content of soluble sugars and sorbitol. Both exogenous dopamine and MdTYDC OE activated the expression of MdORG2 (a bHLH transcription factor), which, in turn, directly binds to the promoter of MdTYDC, activating its expression, increasing dopamine levels, and consequently conferring strong low-N tolerance in apple. Thus, this reveals the molecular pathways by which dopamine regulates low-N tolerance in apple through pathways involving MdTYDC and MdORG2.

2.
Hortic Res ; 11(8): uhae159, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39108589

ABSTRACT

Glomerella leaf spot (GLS) is a fungal disease caused by Colletotrichum fructicola, which severely restricts the yield and quality of apples. Valine-glutamine (VQ) proteins are transcriptional regulators involved in the regulation of plant growth and stress responses. However, little is known about the role of VQ proteins in the biotic stress response in apple. Here, a VQ gene, MdVQ17, that was highly induced by C. fructicola infection was identified. Overexpression of MdVQ17 in apple increased susceptibility to C. fructicola and significantly reduced the salicylic acid content and ß-1,3-glucanase and chitinase activities. Based on yeast two-hybrid screening, MdWRKY17, which promotes susceptibility to C. fructicola, was identified as an MdVQ17-interacting protein. Co-expression of MdVQ17 can promote the binding and transcriptional activation activity of MdWRKY17 on the promoter of Downy Mildew Resistant 6 (MdDMR6), thereby promoting MdWRKY17-mediated salicylic acid degradation. Based on DNA affinity purification sequencing, the pectin lyase-encoding gene MdPL-like was identified as a direct target of MdWRKY17. MdWRKY17 can directly bind to the promoter of MdPL-like and activate its transcription, and the binding and activation of MdWRKY17 on the MdPL-like promoter were significantly enhanced by MdVQ17 co-expression. Functional identification showed that MdPL-like promoted pectin lyase activity and susceptibility to C. fructicola. In sum, these results demonstrate that the MdVQ17-MdWRKY17 module mediates the response to C. fructicola infection by regulating salicylic acid accumulation and pectin lyase activity. Our findings provide novel insights into the mechanisms by which the VQ-WRKY complex modulates plant pathogen defense responses.

3.
Heliyon ; 10(15): e35663, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170385

ABSTRACT

Objectives: Although anti-VEGF and retinal laser photocoagulation are two therapeutic modalities that have been used in the clinical treatment of diabetic retinopathy (DR), it is unknown how these modalities target vascular endothelial function in DR. Methods: We first downloaded and analyzed the differential genes in two DR-related datasets, GSE60436 and GSE53257. The differential gene expression was then verified using RT-qPCR, and the most upregulated gene, NDUFB7, was selected for subsequent experiments. Subsequently, the role of NDUFB7 silencing and enforced expression on the proliferation and apoptosis of HRVECs was explored using CCK-8 assay, EDU proliferation assay and apoptotic TUNEL staining. In addition, the upstream potential miRNAs of NDUFB7 were predicted online using the Targetscan website. RT-qPCR, Western blotting (WB), and dual luciferase gene reporter assay were used to confirm the targeting connection between miR-2861 and NDUFB7. Finally, miR-2861 expression after high glucose (HG) treatment and its effect on proliferation and apoptosis of HRVECs under HG were investigated. Results: In this study, we first downloaded and analyzed the differential genes in two DR-related datasets, GSE60436 and GSE53257. We found that TUFM, PRELID1, MRPL32, NDUFB7, MRPL4, MRPL40, HSD17B10 and SLC25A13 were upregulated in DR, and RT-qPCR showed that NDUFB7 was most upregulated. Subsequent CCK-8 assay, EDU proliferation assay and TUNEL staining showed that up-picked NDUFB7 promotes proliferation and inhibits apoptosis of HRVECs. In addition, the upstream potential miRNAs of NDUFB7 were predicted online using the Targetscan website. RT-qPCR, Western blotting (WB), and dual luciferase gene reporter assay confirmed the targeting connection between miR-2861 and NDUFB7. Finally, it was observed that miR-2861 can inhibit the proliferation and promote the apoptosis of HRVECs by targeting NDUFB7. Conclusions: Our findings showed that upregulated NDUFB7 in DR promotes proliferation and inhibits apoptosis of HRVECs, and miR-2861 can rescue the pathogenic effect of NDUFB7 upregulation by targeting NDUFB7.

4.
Adv Sci (Weinh) ; 11(35): e2400930, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39032167

ABSTRACT

Soil alkalization is an adverse factor limiting plant growth and yield. As a signaling molecule and secondary metabolite, γ-aminobutyric acid (GABA) responds rapidly to alkaline stress and enhances the alkaline resistance of plants. However, the molecular mechanisms by which the GABA pathway adapts to alkaline stress remain unclear. In this study, a transcription factor, MdNAC104 is identified, from the transcriptome of the alkaline-stressed roots of apple, which effectively reduces GABA levels and negatively regulates alkaline resistance. Nevertheless, applying exogenous GABA compensates the negative regulatory mechanism of overexpressed MdNAC104 on alkaline resistance. Further research confirms that MdNAC104 repressed the GABA biosynthetic gene MdGAD1/3 and the GABA transporter gene MdALMT13 by binding to their promoters. Here, MdGAD1/3 actively regulates alkaline resistance by increasing GABA synthesis, while MdALMT13 promotes GABA accumulation and efflux in roots, resulting in an improved resistance to alkaline stress. This subsequent assays reveal that MdSINA2 interacts with MdNAC104 and positively regulates root GABA content and alkaline resistance by ubiquitinating and degrading MdNAC104 via the 26S proteasome pathway. Thus, the study reveals the regulation of alkaline resistance and GABA homeostasis via the MdSINA2-MdNAC104-MdGAD1/3/MdALMT13 module in apple. These findings provide novel insight into the molecular mechanisms of alkaline resistance in plants.


Subject(s)
Gene Expression Regulation, Plant , Malus , gamma-Aminobutyric Acid , Malus/genetics , Malus/metabolism , gamma-Aminobutyric Acid/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Biological Transport
5.
Plant J ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39039969

ABSTRACT

Water use efficiency (WUE) is crucial for apple tree fitness and survival, especially in response to climatic changes. The receptor-like kinase FERONIA is reportedly an essential regulator of plant stress responses, but its role in regulating WUE under water deficit conditions is unclear. Here, we found that overexpressing the apple FERONIA receptor kinase gene, MdMRLK2, enhanced apple WUE under long-term water deficit conditions. Under drought treatment, 35S::MdMRLK2 apple plants exhibited higher photosynthetic capacity and antioxidant enzyme activities than wild-type (WT) plants. 35S::MdMRLK2 apple plants also showed increased biomass accumulation, root activity, and water potential compared to WT plants. Moreover, MdMRLK2 physically interacts with and phosphorylates cinnamoyl-CoA reductase 1, MdCCR1, an enzyme essential for lignin synthesis, at position Ser260. This interaction likely contributed to increased vessel density, vascular cylinder area, and lignin content in 35S::MdMRLK2 apple plants under drought conditions. Therefore, our findings reveal a novel function of MdMRLK2 in regulating apple WUE under water deficit conditions.

6.
World Neurosurg ; 189: 357-372.e8, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38871284

ABSTRACT

BACKGROUND: The fusion rate, clinical efficacy, and complications of minimally invasive fusion surgery and open fusion surgery in the treatment of lumbar degenerative disease are still unclear. METHODS: We conducted a literature search using PubMed, Embase, Cochrane Library, CNKI, and WANFANG databases. RESULTS: This study included 38 retrospective studies involving 3097 patients. Five intervention modalities were considered: unilateral biportal endoscopic-lumbar interbody fusion (UBE-LIF), percutaneous endoscopic-lumbar interbody fusion (PE-LIF), minimally invasive-transforaminal lumbar interbody fusion (MIS-TLIF), transforaminal lumbar interbody fusion (TLIF), and posterior lumbar interbody fusion (PLIF). Quality assessment indicated that each study met acceptable quality standards. PE-LIF demonstrated reduced low back pain (Odds Ratio = 0.50, Confidence Interval: 0.38-0.65) and lower complication rate (Odds Ratio = 0.46, Confidence Interval: 0.25-0.87) compared to PLIF. However, in indirect comparisons, PE-LIF showed the lowest fusion rates, with the ranking as follows: UBE-LIF (83.2%) > MIS-TLIF (59.6%) > TLIF (44.3%) > PLIF (39.8%) > PE-LIF (23.1%). With respect to low back pain relief, PE-LIF yielded the best results, with the order of relief as follows: PE-LIF (96.4%) > MIS-TLIF (64.8%) > UBE-LIF (62.6%) > TLIF (23.0%) > PLIF (3.2%). Global and local consistency tests showed satisfactory results, and heterogeneity tests indicated good stability. CONCLUSIONS: Compared to conventional open surgery, minimally invasive fusion surgery offered better scores for low back pain and Oswestry Disability Index, lower complication rates, reduced bleeding, and shorter hospital stays. However, minimally invasive fusion surgery did not show a significant advantage in terms of fusion rate and had a longer operative time.


Subject(s)
Intervertebral Disc Degeneration , Lumbar Vertebrae , Minimally Invasive Surgical Procedures , Spinal Fusion , Humans , Spinal Fusion/methods , Minimally Invasive Surgical Procedures/methods , Lumbar Vertebrae/surgery , Intervertebral Disc Degeneration/surgery , Treatment Outcome , Network Meta-Analysis , Postoperative Complications/epidemiology , Low Back Pain/surgery
7.
Plant Biotechnol J ; 22(8): 2364-2376, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38683692

ABSTRACT

Glomerella leaf spot (GLS), caused by the fungus Colletotrichum fructicola, is considered one of the most destructive diseases affecting apples. The VQ-WRKY complex plays a crucial role in the response of plants to biotic stresses. However, our understanding of the defensive role of the VQ-WRKY complex on woody plants, particularly apples, under biotic stress, remains limited. In this study, we elucidated the molecular mechanisms underlying the defensive role of the apple MdVQ37-MdWRKY100 module in response to GLS infection. The overexpression of MdWRKY100 enhanced resistance to C. fructicola, whereas MdWRKY100 RNA interference in apple plants reduced resistance to C. fructicola by affecting salicylic acid (SA) content and the expression level of the CC-NBS-LRR resistance gene MdRPM1. DAP-seq, Y1H, EMSA, and RT-qPCR assays indicated that MdWRKY100 inhibited the expression of MdWRKY17, a positive regulatory factor gene of SA degradation, upregulated the expression of MdPAL1, a key enzyme gene of SA biosynthesis, and promoted MdRPM1 expression by directly binding to their promotors. Transient overexpression and silencing experiments showed that MdPAL1 and MdRPM1 positively regulated GLS resistance in apples. Furthermore, the overexpression of MdVQ37 increased the susceptibility to C. fructicola by reducing the SA content and expression level of MdRPM1. Additionally, MdVQ37 interacted with MdWRKY100, which repressed the transcriptional activity of MdWRKY100. In summary, these results revealed the molecular mechanism through which the apple MdVQ37-MdWRKY100 module responds to GLS infection by regulating SA content and MdRPM1 expression, providing novel insights into the involvement of the VQ-WRKY complex in plant pathogen defence responses.


Subject(s)
Colletotrichum , Disease Resistance , Gene Expression Regulation, Plant , Malus , Plant Diseases , Plant Proteins , Salicylic Acid , Malus/microbiology , Malus/genetics , Malus/metabolism , Salicylic Acid/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Colletotrichum/physiology , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Leaves/genetics , Plants, Genetically Modified
8.
Int J Food Microbiol ; 413: 110588, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38266376

ABSTRACT

The traditional Chinese alcoholic beverage Baijiu is produced by spontaneous fermentation of grains under anaerobic conditions. While numerous studies have used metagenomic technology to investigate the microbiome of Baijiu brewing, the microbial succession mechanism of Baijiu brewing has not been fully clarified, and metagenomic strategies for microecology surveys have not been comprehensively evaluated. Using the fermentation process of strong-flavor Baijiu as a model, we compared the data for bacterial communities based on short read 16S rRNA variable regions, V3-V4, and full-length 16S regions, V1-V9, to whole metagenomic shotgun sequencing (WMS) to measure the effect of technology selection on phylogenetic and functional profiles. The results showed differences in bacterial compositions and their relation to volatiles and physicochemical variables between sequencing methods. Furthermore, the percentage of V3-V4 sequences assigned to species level was higher than the percentage of V1-V9 sequences according to SILVA taxonomy, but lower according to NCBI taxonomy (P < 0.05). In both SILVA and NCBI taxonomies, the relative abundances of bacterial communities at both the genus and family levels were more positively correlated with WMS data in the V3-V4 dataset than in the V1-V9 dataset. The WMS identified changes in abundances of multiple metabolic pathways during fermentation (P < 0.05), including "starch and sucrose metabolism," "galactose metabolism," and "fatty acid biosynthesis." Although functional predictions derived from 16S data show similar patterns to WMS, most metabolic pathway changes are uncorrelated (P > 0.05). This study provided new technical and biological insights into Baijiu production that may assist in selection of methodologies for studies of fermentation systems.


Subject(s)
Alcoholic Beverages , Research Design , Fermentation , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Alcoholic Beverages/microbiology , Bacteria
9.
Plant Physiol ; 194(2): 1181-1203, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37930306

ABSTRACT

Drought stress is a key environmental factor limiting the productivity, quality, and geographic distribution of crops worldwide. Abscisic acid (ABA) plays an important role in plant drought stress responses, but the molecular mechanisms remain unclear. Here, we report an ABA-responsive bHLH transcription factor, MdbHLH160, which promotes drought tolerance in Arabidopsis (Arabidopsis thaliana) and apple (Malus domestica). Under drought conditions, MdbHLH160 is directly bound to the MdSOD1 (superoxide dismutase 1) promoter and activated its transcription, thereby triggering reactive oxygen species (ROS) scavenging and enhancing apple drought tolerance. MdbHLH160 also promoted MdSOD1 enzyme activity and accumulation in the nucleus through direct protein interactions, thus inhibiting excessive nuclear ROS levels. Moreover, MdbHLH160 directly upregulated the expression of MdDREB2A-like, a DREB (dehydration-responsive element binding factor) family gene that promotes apple drought tolerance. Protein degradation and ubiquitination assays showed that drought and ABA treatment stabilized MdbHLH160. The BTB protein MdBT2 was identified as an MdbHLH160-interacting protein that promoted MdbHLH160 ubiquitination and degradation, and ABA treatment substantially inhibited this process. Overall, our findings provide insights into the molecular mechanisms of ABA-modulated drought tolerance at both the transcriptional and post-translational levels via the ABA-MdBT2-MdbHLH160-MdSOD1/MdDREB2A-like cascade.


Subject(s)
Arabidopsis , Malus , Malus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Drought Resistance , Reactive Oxygen Species/metabolism , Arabidopsis/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Droughts , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics
10.
Plant Physiol Biochem ; 205: 108207, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38006791

ABSTRACT

The bHLH family, the second largest transcription factor (TF) family in plants, plays a crucial role in regulating plant growth and development processes. However, the biological functions and mechanisms of most bHLH proteins remain unknown, particularly in apples. In this study, we found that MdbHLH4 positively modulates plant growth and development by enhancing cell expansion. Overexpression (OE) of MdbHLH4 resulted in increased biomass, stem and root length, leaf area, and larger areas of pith, xylem, and cortex with greater cell size compared with wild-type apple plants. Conversely, RNA interference (RNAi)-mediated silencing of MdbHLH4 led to reduced xylem and phloem as well as smaller cell size compared to wild-type apple plants. Ectopic expression of MdbHLH4 in tomatoes resulted in enlarged fruits with impaired color appearance, decreased accumulation of soluble solids, and decreased flesh firmness along with larger seeds. Subsequent investigations have shown that MdbHLH4 directly binds to the promoters of MdARF6b and MdPIF4b, enhancing their expression levels. These findings suggest that MdbHLH4 potentially regulates plant cell expansion through auxin and light signaling pathways. These study results not only provide new insights into the roles of bHLH transcription factors in regulating plant growth and development but also contribute to a deeper understanding of their underlying mechanisms.


Subject(s)
Malus , Malus/metabolism , Transcription Factors/genetics , Fruit/metabolism , Cell Enlargement , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism
11.
Discov Med ; 35(178): 796-804, 2023 10.
Article in English | MEDLINE | ID: mdl-37811617

ABSTRACT

BACKGROUND: This study aims to investigate the protective effect of Toll-like receptor 4 (TLR4) inhibitor Resatorvid (TAK-242) on retinal ganglion cells (RGCs) in a chronic ocular hypertension (COH) rat model, as well as to explore the potential involved mechanisms. METHODS: COH model was built up in rats with a single intracameral administration of cross-linking hydrogel. The expression levels of TLR4, NLR family pyrin domain containing 3 (NLRP3), microglial activation and pro-inflammatory cytokines were evaluated in COH retinas and COH retinas treated with TAK-242 using immunofluorescence staining and Western blot. Additionally, retrograde labeling and neuronal nuclear protein (NeuN) staining were performed to count RGCs. RESULTS: Activated microglia and increased TLR4 expression were observed in the retinas of COH rats. This was accompanied by upregulated expressions of NLRP3, tumor necrosis factor alpha (TNF-α), cytokine interleukin-1ß (IL-1ß) and Interleukin-6 (IL-6). Intravitreal injection of TAK-242 promoted the survival of RGCs by attenuating microglial activation, interfering with the TLR4-NLRP3 pathway and regulating pro-inflammatory cytokines. CONCLUSIONS: Targeting TLR4 inhibition could be a potential therapeutic strategy to protect RGCs from COH damage.


Subject(s)
Ocular Hypertension , Retinal Ganglion Cells , Rats , Animals , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Toll-Like Receptor 4/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Ocular Hypertension/drug therapy , Ocular Hypertension/metabolism , Ocular Hypertension/pathology , Cytokines/metabolism
12.
Cyberpsychol Behav Soc Netw ; 26(12): 924-929, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37883183

ABSTRACT

Amblyopia affects development of children's monocular vision and binocular function and becomes a largely intractable problem with increasing aging. This study is to investigate the binocular function and evaluate efficacy of digital therapy in children 8-13 years of age with anisometropic amblyopia. The patients in the digital therapy group performed the training with the digital amblyopia therapeutic software. The visual acuity and binocular function (perceptual eye position [PEP], suppression, and stereopsis) were examined at the first visit and 3-month post-treatment. Twenty-three cases in the control group and 25 cases in the digital therapy group were enrolled. The results revealed that 3-month digital therapy can effectively improve corrected distance visual acuity (CDVA) and improve the binocular function, including PEP, suppression, and second-order stereopsis in children with anisometropic amblyopia, 8-13 years of age. Digital therapy for amblyopia can effectively improve monocular CDVA of amblyopic eyes and binocular function in older children with anisometropic amblyopia.


Subject(s)
Amblyopia , Child , Humans , Amblyopia/therapy , Vision, Binocular , Visual Acuity , Software
13.
Plant J ; 116(3): 669-689, 2023 11.
Article in English | MEDLINE | ID: mdl-37471682

ABSTRACT

Salt stress adversely affects the yield and quality of crops and limits their geographical distribution. Studying the functions and regulatory mechanisms of key genes in the salt stress response is important for breeding crops with enhanced stress resistance. Autophagy plays an important role in modulating the tolerance of plants to various types of abiotic stressors. However, the mechanisms underlying salt-induced autophagy are largely unknown. Cation/Ca2+ exchanger proteins enhance apple salt tolerance by inhibiting Na+ accumulation but the mechanism underlying the response to salt stress remains unclear. Here, we show that the autophagy-related gene MdATG18a modulated apple salt tolerance. Under salt stress, the autophagic activity, proline content, and antioxidant enzyme activities were higher and Na+ accumulation was lower in MdATG18a-overexpressing transgenic plants than in control plants. The use of an autophagy inhibitor during the salt treatment demonstrated that the regulatory function of MdATG18a depended on autophagy. The yeast-one-hybrid assay revealed that the homeodomain-leucine zipper (HD-Zip) transcription factor MdHB7-like directly bound to the MdATG18a promoter. Transcriptional regulation and genetic analyses showed that MdHB7-like enhanced salt-induced autophagic activity by promoting MdATG18a expression. The analysis of Na+ efflux rate in transgenic yeast indicated that MdCCX1 expression significantly promoted Na+ efflux. Promoter binding, transcriptional regulation, and genetic analyses showed that MdHB7-like promoted Na+ efflux and apple salt tolerance by directly promoting MdCCX1 expression, which was independent of the autophagy pathway. Overall, our findings provide insight into the mechanism underlying MdHB7-like-mediated salt tolerance in apple through the MdHB7-like-MdATG18a and MdHB7-like-MdCCX1 modules. These results will aid future studies on the mechanisms underlying stress-induced autophagy and the regulation of stress tolerance in plants.


Subject(s)
Malus , Malus/metabolism , Salt Tolerance/genetics , Plant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Plant Breeding , Plants, Genetically Modified/genetics , Autophagy/genetics , Gene Expression Regulation, Plant , Stress, Physiological/genetics
14.
Plant Biotechnol J ; 21(10): 2057-2073, 2023 10.
Article in English | MEDLINE | ID: mdl-37387580

ABSTRACT

Low temperature is the main environmental factor affecting the yield, quality and geographical distribution of crops, which significantly restricts development of the fruit industry. The NAC (NAM, ATAF1/2 and CUC2) transcription factor (TF) family is involved in regulating plant cold tolerance, but the mechanisms underlying these regulatory processes remain unclear. Here, the NAC TF MdNAC104 played a positive role in modulating apple cold tolerance. Under cold stress, MdNAC104-overexpressing transgenic plants exhibited less ion leakage and lower ROS (reactive oxygen species) accumulation, but higher contents of osmoregulatory substances and activities of antioxidant enzymes. Transcriptional regulation analysis showed that MdNAC104 directly bound to the MdCBF1 and MdCBF3 promoters to promote expression. In addition, based on combined transcriptomic and metabolomic analyses, as well as promoter binding and transcriptional regulation analyses, we found that MdNAC104 stimulated the accumulation of anthocyanin under cold conditions by upregulating the expression of anthocyanin synthesis-related genes, including MdCHS-b, MdCHI-a, MdF3H-a and MdANS-b, and increased the activities of the antioxidant enzymes by promoting the expression of the antioxidant enzyme-encoding genes MdFSD2 and MdPRXR1.1. In conclusion, this study revealed the MdNAC104 regulatory mechanism of cold tolerance in apple via CBF-dependent and CBF-independent pathways.


Subject(s)
Malus , Malus/metabolism , Antioxidants/metabolism , Anthocyanins , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cold Temperature , Gene Expression Regulation, Plant/genetics , Plants, Genetically Modified/metabolism
15.
Int J Food Microbiol ; 397: 110212, 2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37084618

ABSTRACT

The quality and composition of strong-flavor Baijiu (SFB), a type of Chinese liquor, depends on the variety of sorghum used in fermentation. However, comprehensive in situ studies measuring the effects sorghum varieties on the fermentation are lacking and the underlying microbial mechanisms remains poorly understood. We studied the in situ fermentation of SFB by using metagenomic, metaproteomic, and metabolomic techniques across four sorghum varieties. Sensory characteristics were best for SFB made from glutinous variety Luzhouhong, followed by glutinous hybrid Jinnuoliang and Jinuoliang, and those made with non-glutinous Dongzajiao. In agreement with sensory evaluations, the volatile composition of SFB samples differed between sorghum varieties (P < 0.05). Fermentation of different sorghum varieties varied in microbial diversity, structure, volatile compounds, and physicochemical properties (pH, temperature, starch, reducing sugar, and moisture) (P < 0.05), with most changes occurring within the first 21 days. Additionally, the microbial interactions and their relationship with volatiles, as well as the physicochemical factors that govern microbial succession, differed between varieties of sorghum. The number of physicochemical factors affecting bacterial communities outweighed those affecting fungal communities, suggesting that bacteria were less resilient to the brewing conditions. This correlates with the finding that bacteria play a major role in the differences in microbial communities and metabolic functions during fermentation with the different varieties of sorghum. Metagenomic function analysis revealed differences in amino acid and carbohydrate metabolism between sorghum varieties throughout most of the brewing process. Metaproteomics further indicated most differential proteins were found in these two pathways, related to differences in volatiles between sorghum varieties of Baijiu and originating from Lactobacillus. These results provide insight into the microbial principles underlying Baijiu production and can be used to improve the quality of Baijiu by selecting the appropriate raw materials and optimizing fermentation parameters.


Subject(s)
Sorghum , Fermentation , Alcoholic Beverages/microbiology , Carbohydrate Metabolism , Bacteria/genetics , Bacteria/metabolism , Edible Grain
16.
Plant Physiol ; 192(3): 1768-1784, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37002821

ABSTRACT

Drought is a common stress in agricultural production. Thus, it is imperative to understand how fruit crops respond to drought and to develop drought-tolerant varieties. This paper provides an overview of the effects of drought on the vegetative and reproductive growth of fruits. We summarize the empirical studies that have assessed the physiological and molecular mechanisms of the drought response in fruit crops. This review focuses on the roles of calcium (Ca2+) signaling, abscisic acid (ABA), reactive oxygen species signaling, and protein phosphorylation underlying the early drought response in plants. We review the resulting downstream ABA-dependent and ABA-independent transcriptional regulation in fruit crops under drought stress. Moreover, we highlight the positive and negative regulatory mechanisms of microRNAs in the drought response of fruit crops. Lastly, strategies (including breeding and agricultural practices) to improve the drought resistance of fruit crops are outlined.


Subject(s)
Droughts , Fruit , Fruit/genetics , Fruit/metabolism , Plant Breeding , Stress, Physiological , Abscisic Acid/metabolism , Gene Expression Regulation, Plant
17.
Nat Commun ; 14(1): 2026, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041148

ABSTRACT

Craniofacial microsomia (CFM; also known as Goldenhar syndrome), is a craniofacial developmental disorder of variable expressivity and severity with a recognizable set of abnormalities. These birth defects are associated with structures derived from the first and second pharyngeal arches, can occur unilaterally and include ear dysplasia, microtia, preauricular tags and pits, facial asymmetry and other malformations. The inheritance pattern is controversial, and the molecular etiology of this syndrome is largely unknown. A total of 670 patients belonging to unrelated pedigrees with European and Chinese ancestry with CFM, are investigated. We identify 18 likely pathogenic variants in 21 probands (3.1%) in FOXI3. Biochemical experiments on transcriptional activity and subcellular localization of the likely pathogenic FOXI3 variants, and knock-in mouse studies strongly support the involvement of FOXI3 in CFM. Our findings indicate autosomal dominant inheritance with reduced penetrance, and/or autosomal recessive inheritance. The phenotypic expression of the FOXI3 variants is variable. The penetrance of the likely pathogenic variants in the seemingly dominant form is reduced, since a considerable number of such variants in affected individuals were inherited from non-affected parents. Here we provide suggestive evidence that common variation in the FOXI3 allele in trans with the pathogenic variant could modify the phenotypic severity and accounts for the incomplete penetrance.


Subject(s)
Goldenhar Syndrome , Animals , Mice , Goldenhar Syndrome/pathology , Facial Asymmetry , Pedigree , Forkhead Transcription Factors
18.
Nanomicro Lett ; 15(1): 53, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36795246

ABSTRACT

Self-charging power systems collecting energy harvesting technology and batteries are attracting extensive attention. To solve the disadvantages of the traditional integrated system, such as highly dependent on energy supply and complex structure, an air-rechargeable Zn battery based on MoS2/PANI cathode is reported. Benefited from the excellent conductivity desolvation shield of PANI, the MoS2/PANI cathode exhibits ultra-high capacity (304.98 mAh g-1 in N2 and 351.25 mAh g-1 in air). In particular, this battery has the ability to collect, convert and store energy simultaneously by an air-rechargeable process of the spontaneous redox reaction between the discharged cathode and O2 from air. The air-rechargeable Zn batteries display a high open-circuit voltage (1.15 V), an unforgettable discharge capacity (316.09 mAh g-1 and the air-rechargeable depth is 89.99%) and good air-recharging stability (291.22 mAh g-1 after 50 air recharging/galvanostatic current discharge cycle). Most importantly, both our quasi-solid zinc ion batteries and batteries modules have excellent performance and practicability. This work will provide a promising research direction for the material design and device assembly of the next-generation self-powered system.

19.
Plant Physiol ; 191(1): 789-806, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36331333

ABSTRACT

Low temperature affects the yield and quality of crops. Inducer of CBF expression 1 (ICE1) plays a positive role in plant cold tolerance by promoting the expression of CRT binding factor (CBF) and cold-responsive (COR) genes. Several ICE1-interacting transcription factors (TFs) that regulate plant cold tolerance have been identified. However, how these TFs affect the function of ICE1 and CBF expression under cold conditions remains unclear. Here, we identified the MYC-type TF MdbHLH4, a negative regulator of cold tolerance in Arabidopsis (Arabidopsis thaliana) and apple (Malus domestica) plants. Under cold conditions, MdbHLH4 inhibits the expression of MdCBF1 and MdCBF3 by directly binding to their promoters. It also interacts with MdICE1L, a homolog of AtICE1 in apple, and inhibits the binding of MdICE1L to the promoters of MdCBF1/3 and thus their expression. We showed that MdCAX3L-2, a Ca2+/H+ exchanger (CAX) family gene that negatively regulates plant cold tolerance, is also a direct target of MdbHLH4. MdbHLH4 reduced apple cold tolerance by promoting MdCAX3L-2 expression. Moreover, overexpression of either MdCAX3L-2 or MdbHLH4 promoted the cold-induced ubiquitination and degradation of MdICE1L. Overall, our results reveal that MdbHLH4 negatively regulates plant cold tolerance by inhibiting MdCBF1/3 expression and MdICE1L promoter-binding activity, as well as by promoting MdCAX3L-2 expression and cold-induced MdICE1L degradation. These findings provide insights into the mechanisms by which ICE1-interacting TFs regulate CBF expression and ICE1 function and thus plant cold tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Malus , Malus/metabolism , Cold Temperature , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Plant Physiol Biochem ; 194: 202-213, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36427382

ABSTRACT

Screening bicarbonate-tolerant genotypes is an environmentally-friendly and long-term effective strategy to cope with bicarbonate-induced chlorosis in fruit crops grown on calcareous soils. We investigated eleven genotypes from four kiwifruit species (Actinidia chinensis, A. macrosperma, A. polygama, and A. valvata) for differences in bicarbonate tolerance. We also characterized the physiological and molecular differences in two contrasting genotypes of this group. In the first experiment, bicarbonate-treated plantlets were irrigated with 3.0 g L-1 CaCO3 and 5.04 g L-1 NaHCO3 in peat and perlite medium culture. Based on principal component analysis, weight-based membership function method and cluster analysis, the tested genotypes were classified into three groups: (1) tolerant, including YX, Av-1, Acd, Ap, Av-2, and QM; (2) moderately tolerant, including Av-3, Am, Av-4, and HWD; and (3) sensitive, including only QH. In the second experiment, QH (bicarbonate-sensitive) and YX (bicarbonate-tolerant) were grown in sand culture with 4.0 g L-1 CaCO3 and 0.84 g L-1 or 1.26 g L-1 NaHCO3. Compared with QH, YX showed a better ability to take up iron (Fe) by roots and to transport Fe from roots to shoots in the bicarbonate treatments, probably due to a better capacity to protect from oxidative damage and to excrete protons, and a differential expression of genes associated with Fe uptake and translocation, including HA8, IRT1, YSL3 and NRAMP3. The results can facilitate identifying potential resources for bicarbonate tolerance and breeding new rootstocks, and contribute to the elucidation of the bicarbonate tolerance mechanisms in the genus Actinidia.


Subject(s)
Actinidia , Bicarbonates , Bicarbonates/pharmacology , Bicarbonates/metabolism , Actinidia/genetics , Fruit/genetics , Plant Breeding , Genotype , Plant Roots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL