Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 313: 137309, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36574575

ABSTRACT

While Azorubin S (AZRS) is extensively used as a reddish anionic azo dye for textiles and an alimentary colorant in food, AZRS is mutagenic/carcinogenic, and it shall be removed from dye-containing wastewaters. In view of advantages of SO4•--related chemical oxidation technology, oxone (KHSO5) would an ideal source of SO4•- for degrading AZRS, and heterogeneous Co3O4-based catalysts is required and shall be developed for activating oxone. Herein, a facile protocol is proposed for fabricating mesoporous silica (MS)-confined Co3O4 by a templating agent-mediated dry-grinding procedure. As the templating agent retained inside the ordered pores of MS (before calcination) would facilitate insertion and dispersion of Co ions into pores, the resulting Co3O4 nanoparticles (NPs) would be grown and confined within the pores of MS after calcination, affording Co@MS. On the contrary, another analogue, Co/MS, is also prepared using the similar protocol without the templating agent-mediated introduction of Co, but Co3O4 NPs seriously aggregate as clusters on MS. Therefore, Co@MS outperforms Co/MS for activating oxone to eliminate AZRS. Co@MS shows a noticeably lower activation energy of AZRS elimination than the existing catalysts, revealing its advantage over the reported catalysts. Moreover, the mechanistic investigation of AZRS elimination by Co@MS-activated oxone has been also elucidated for identifying the presence of SO4•‒, •OH, and 1O2 in AZRS degradation using scavengers, electron paramagnetic resonance spectroscopy, and semi-quantification. The AZRS decomposition pathway is also investigated and unveiled in details via the DFT calculation. These results validate that Co@MS appears as a superior catalyst of oxone activation for AZRS degradation.


Subject(s)
Silicon Dioxide , Water , Water/chemistry , Azo Compounds , Cobalt/chemistry
2.
Nanomaterials (Basel) ; 12(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36558250

ABSTRACT

As cobalt (Co) has been the most useful element for activating Oxone to generate SO4•-, this study aims to develop a hierarchical catalyst with nanoscale functionality and macroscale convenience by decorating nanoscale Co-based oxides on macroscale supports. Specifically, a facile protocol is proposed by utilizing Cu mesh itself as a Cu source for fabricating CuCo2O4 on Cu mesh. By changing the dosages of the Co precursor and carbamide, various nanostructures of CuCo2O4 grown on a Cu mesh can be afforded, including nanoscale needles, flowers, and sheets. Even though the Cu mesh itself can be also transformed to a Cu-Oxide mesh, the growth of CuCo2O4 on the Cu mesh significantly improves its physical, chemical, and electrochemical properties, making these CuCo2O4@Cu meshes much more superior catalysts for activating Oxone to degrade the Azo toxicant, Acid Red 27. More interestingly, the flower-like CuCo2O4@Cu mesh exhibits a higher specific surface area and more superior electrochemical performance, enabling the flower-like CuCo2O4@Cu mesh to show the highest catalytic activity for Oxone activation to degrade Acid Red 27. The flower-like CuCo2O4@Cu mesh also exhibits a much lower Ea of Acid Red 27 degradation than the reported catalysts. These results demonstrate that CuCo2O4@Cu meshes are advantageous heterogeneous catalysts for Oxone activation, and especially, the flower-like CuCo2O4@Cu mesh appears as the most effective CuCo2O4@Cu mesh to eliminate the toxic Acid Red 27.

SELECTION OF CITATIONS
SEARCH DETAIL
...