Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 4264, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383553

ABSTRACT

Photoacoustic imaging is a promising technology for in vivo imaging. However, its imaging performance can be hampered by motion artifacts, especially when dealing with high-rate motion. In this paper, we propose an orthogonal motion correction method that utilizes cross-correlation along orthogonal scan directions to extract accurate motion displacements from the photoacoustic data. The extracted displacements are then applied to remove artifacts and compensate for motion-induced distortions. Phantom experiments demonstrate that the proposed method can extract the motion information and the structural similarity index measurement after correction is increased by 26.5% and 11.2% compared to no correction and the previous correction method. Then the effectiveness of our method is evaluated in vivo imaging of a mouse brain. Our method shows a stable and effective performance under high-rate motion. The high accuracy of the motion correction method makes it valuable in improving the accuracy of photoacoustic imaging.

2.
Ultrasound Med Biol ; 49(3): 802-819, 2023 03.
Article in English | MEDLINE | ID: mdl-36572588

ABSTRACT

This study proposes a novel modified sign coherence factor (SCF) weighting adapted to the frequency-domain (FD) beamforming for ultrasound plane-wave imaging to achieve a high frame rate and better image quality. First, before beamforming, the sign components were extracted from the radiofrequency signals of aperture data. Second, the modified SCF was established using the FD beamformed sign components. Finally, the FD beamformed image was weighted by the modified SCF. To assess the performance of the proposed modified SCF for FD beamforming, the resolution, contrast, computation complexity and execution time of the generated images were evaluated. The results revealed that the FD-SCF could significantly improve the computational load compared with the classic delay-and-sum SCF on the premise of equal image quality improvement. Therefore, high image quality and low computational load have been successfully combined under the proposed weighting method.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Ultrasonography/methods , Phantoms, Imaging , Image Processing, Computer-Assisted/methods
3.
Photoacoustics ; 28: 100427, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36466730

ABSTRACT

To suppress the noise and sidelobe of photoacoustic images, a method is proposed combined with spatial coherence and polarity coherence. In this method, PA signals are delayed, multiplied, then performed polarity coherence, and finally summed. The polarity of delayed-and-multiplied signals rather than the amplitude is considered in polarity coherence operation. The polarity coherence factor is calculated based on the standard deviation of the polarity. Then, the factor as weights is applied to the coherent sum output after spatial autocorrelation to finally obtain the image. The simulated and experimental results prove that the noise level can be effectively suppressed due to its relatively low polarity coherence factor. Compared with the delay-and-sum method, the quantitative results in simulations show that the image contrast and full-width at half-maximum of the proposed method increase by about 227.0 % and 56.5 % when the signal-to-noise ratio of the raw signal is 0 dB, respectively. Besides achieving a better image contrast, this method obtains improvements in sidelobe attenuation and has a narrow main lobe.

SELECTION OF CITATIONS
SEARCH DETAIL
...