Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; : 107556, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002683

ABSTRACT

Diversity, a hallmark of G protein-coupled receptor (GPCR) signaling, partly stems from alternative splicing of a single gene generating more than one isoform for a receptor. Additionally, receptor responses to ligands can be attenuated by desensitization upon prolonged or repeated ligand exposure. Both phenomena have been demonstrated and exemplified by the deuterostome tachykinin (TK) signaling system, although the role of phosphorylation in desensitization remains a subject of debate. Here, we describe the signaling system for tachykinin-related peptides (TKRPs) in a protostome, mollusk Aplysia. We cloned the Aplysia TKRP precursor, which encodes three TKRPs (apTKRP-1, apTKRP-2a, and apTKRP-2b) containing the FXGXR-amide motif. In situ hybridization and immunohistochemistry showed predominant expression of TKRP mRNA and peptide in the cerebral ganglia. TKRPs and their post-translational modifications were observed in extracts of CNS ganglia using mass spectrometry. We identified two Aplysia TKRP receptors (TKRPRs), named apTKRPR-A and apTKRPR-B. These receptors are two isoforms generated through alternative splicing of the same gene and differ only in their intracellular C-termini. Structure-activity relationship analysis of apTKRP-2b revealed that both C-terminal amidation and conserved residues of the ligand are critical for receptor activation. C-terminal truncates and mutants of apTKRPRs suggested that there is a C-terminal phosphorylation-independent desensitization for both receptors. Moreover, apTKRPR-B also exhibits phosphorylation-dependent desensitization through the phosphorylation of C-terminal Ser/Thr residues. This comprehensive characterization of the Aplysia TKRP signaling system underscores the evolutionary conservation of the TKRP and TK signaling systems, while highlighting the intricacies of receptor regulation through alternative splicing and differential desensitization mechanisms.

2.
Sci Rep ; 13(1): 7662, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169790

ABSTRACT

Neuropeptides are ubiquitous intercellular signaling molecules in the CNS and play diverse roles in modulating physiological functions by acting on specific G-protein coupled receptors (GPCRs). Among them, the elevenin signaling system is now believed to be present primarily in protostomes. Although elevenin was first identified from the L11 neuron of the abdominal ganglion in mollusc Aplysia californica, no receptors have been described in Aplysia, nor in any other molluscs. Here, using two elevenin receptors in annelid Platynereis dumerilii, we found three putative elevenin GPCRs in Aplysia. We cloned the three receptors and tentatively named them apElevR1, apElevR2, and apElevR3. Using an inositol monophosphate (IP1) accumulation assay, we demonstrated that Aplysia elevenin with the disulfide bond activated the three putative receptors with low EC50 values (ranging from 1.2 to 25 nM), supporting that they are true receptors for elevenin. In contrast, elevenin without the disulfide bond could not activate the receptors, indicating that the disulfide bond is required for receptor activity. Using alanine substitution of individual conserved residues other than the two cysteines, we showed that these residues appear to be critical to receptor activity, and the three different receptors had different sensitivities to the single residue substitution. Finally, we examined the roles of those residues outside the disulfide bond ring by removing these residues and found that they also appeared to be important to receptor activity. Thus, our study provides an important basis for further study of the functions of elevenin and its receptors in Aplysia and other molluscs.


Subject(s)
Aplysia , Neuropeptides , Animals , Amino Acid Sequence , Aplysia/genetics , Neuropeptides/chemistry , Receptors, G-Protein-Coupled/chemistry , Disulfides
3.
Mol Neurobiol ; 60(4): 2209-2222, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36637746

ABSTRACT

The glymphatic system contributes to the clearance of amyloid-ß from the brain and is disrupted in Alzheimer's disease. However, whether the system is involved in the removal of α-synuclein (α-syn) and whether it is suppressed in Parkinson's disease (PD) remain largely unknown. In mice receiving the intranigral injection of recombinant human α-syn, we found that the glymphatic suppression via aquaporin-4 (AQP4) gene deletion or acetazolamide treatment reduced the clearance of injected α-syn from the brain. In mice overexpressing the human A53T-α-syn, we revealed that AQP4 deficiency accelerated the accumulation of α-syn, facilitated the loss of dopaminergic neurons, and accelerated PD-like symptoms. We also found that the overexpression of A53T-α-syn reduced the expression/polarization of AQP4 and suppressed the glymphatic activity of mice. The study demonstrates a close interaction between the AQP4-mediated glymphatic system and parenchymal α-syn, indicating that restoring the glymphatic activity is a potential therapeutic target to delay PD progression.


Subject(s)
Alzheimer Disease , Glymphatic System , Parkinson Disease , Mice , Humans , Animals , Parkinson Disease/genetics , alpha-Synuclein/metabolism , Glymphatic System/metabolism , Brain/metabolism
4.
J Cereb Blood Flow Metab ; 42(11): 2017-2031, 2022 11.
Article in English | MEDLINE | ID: mdl-35786032

ABSTRACT

Accumulating evidence indicates that the glymphatic system has a critical role in maintaining brain homeostasis. However, the detailed anatomy of the glymphatic pathway is not well understood, mostly due to a lack of high spatial resolution 3D visualization. In this study, a fluorescence micro-optical sectioning tomography (fMOST) was used to characterize the glymphatic architecture in the mouse brain. At 30 and 120 min after intracisternal infusion with fluorescent dextran (Dex-3), lectin was injected to stain the cerebral vasculature. Using fMOST, a high-resolution 3D dataset of the brain-wide distribution of Dex-3 was acquired. Combined with fluorescence microscopy and microplate array, the heterogeneous glymphatic flow and the preferential irrigated regions were identified. These cerebral regions containing large-caliber penetrating arteries and/or adjacent to the subarachnoid space had more robust CSF flow compared to other regions. Moreover, the major glymphatic vessels for CSF influx and fluid efflux in the entire brain were shown in 3D. This study demonstrates the regional heterogeneity in the glymphatic system and provides an anatomical resource for further investigation of the glymphatic function.


Subject(s)
Glymphatic System , Animals , Brain/blood supply , Cerebrospinal Fluid/physiology , Dextrans , Glymphatic System/metabolism , Lectins , Mice , Subarachnoid Space
SELECTION OF CITATIONS
SEARCH DETAIL
...