Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 44(11): 6248-6256, 2023 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-37973107

ABSTRACT

In field conditions, a micro-aerobic layer with 1 cm thickness exists on the surface layer of paddy soil owing to the diffusion of dissolved oxygen via flooding water. However, the particularity of carbon and nitrogen transformation in this specific soil layer is not clear. A typical subtropical paddy soil was collected and incubated with13C-labelled rice straw for 100 days. The responses of exogenous fresh organic carbon(13C-rice straw) and original soil organic carbon mineralization to nitrogen fertilizer addition[(NH4)2SO4]in the micro-aerobic layer(0-1 cm) and anaerobic layer(1-5 cm) of paddy soil and their microbial processes were analyzed based on the analysis of 13C incorporation into phospholipid fatty acid(13C-PLFAs). Nitrogen addition promoted the total CO2 and 13C-CO2 emission from paddy soil by 11.4% and 12.3%, respectively. At the end of incubation, with the addition of nitrogen, the total soil organic carbon (SOC) and13C-recovery rate from rice straw in the anaerobic layer were 2.4% and 9.2% lower than those in the corresponding micro-aerobic layer, respectively. At the early stage(5 days), nitrogen addition increased the total microbial PLFAs in the anaerobic layer with a consistent response of bacterial and fungal PLFAs. However, there was no significant effect from nitrogen on microbial abundance in the micro-aerobic layer. Nitrogen addition had no significant impact on the abundance of total 13C-PLFAs in the micro-aerobic and anaerobic layers, but the abundance of 13C-PLFAs for bacteria and fungi in the micro-aerobic layer was decreased dramatically. At the late stage(100 days), the effect of nitrogen addition on microbial PLFAs was consistent with that at the early stage. The abundances of total, bacterial, and fungal 13C-PLFAs were remarkably increased in the anaerobic layer. However, the abundance of 13C-PLFAs in the micro-aerobic layer showed no significant response to nitrogen addition. During the incubation, the content of NH4+-N in the anaerobic soil layer was higher than that in the micro-aerobic soil layer. This indicates that nitrogen addition increased microbial activity in the anaerobic soil layer caused by the higher NH4+-N concentration, as majority of microorganisms preferred to use NH4+-N. Consequently, the microbial utilization and decomposition of organic carbon in the anaerobic soil layer were accelerated. By contrast, richer available N existed in the form of NO3--N in the micro-aerobic soil layer owing to the ammoxidation process. Thus, the shortage of NO3--N preference microorganisms in the paddy soil environment prohibited the microbial metabolism of organic carbon in the micro-aerobic layer. As a whole, nitrogen fertilization enhanced organic carbon loss via microbial mineralization in paddy soil with a weaker effect in the micro-aerobic layer than that in the anaerobic layer, indicating the limited microbial metabolic activity in the surface micro-aerobic layer could protect the organic carbon stabilization in paddy soil. This study emphasizes the heterogeneity of paddy soil and its significant particularity of carbon and nitrogen transformation in micro-aerobic layers. Consequently, this study has implications for optimizing the forms and method for the application of nitrogen fertilizer in paddy cropping systems.


Subject(s)
Oryza , Soil , Carbon/analysis , Agriculture/methods , Nitrogen/analysis , Fertilizers/analysis , Anaerobiosis , Carbon Dioxide/analysis , Soil Microbiology , Bacteria
2.
Huan Jing Ke Xue ; 43(2): 1069-1076, 2022 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-35075881

ABSTRACT

Two typical subtropical agricultural soils, a flooded paddy soil and its adjacent upland, were collected and then incubated with or without 13C-labeled crop residue (maize straw) for 40 days. During the incubation, the mineralization rate of the crop residue was monitored, and the 13C incorporated into fungal and bacterial phospholipid fatty acid (PLFA) was quantified. At the early stage (0.25-1 days), the mineralization rate of crop residue was faster in paddy soil than that in upland soil, whereas the opposite trend was observed from 2 to 20 days. At the late stage (21-40 days), the mineralization rate was similar in both soils. At the end of incubation, 11% of the total crop residue was mineralized in paddy soil, which was about half of that in upland soil (20%). Although paddy soil had a higher amount of microbial biomass (indicated by total PLFA), the total amounts of 13C-PLFA were comparable in both soils, and the enrichment ratio (proportion of 13C to total C in PLFA) was lower in paddy soil than that in upland soil. This indicated that the microbial community in paddy soil was less active in the uptake of crop residue C than that in upland soil. During the incubation, the residue-derived 13C was mainly distributed in bacterial PLFA (up to 86% of total 13C-PLFA, including 59% in gram-positive and 27% in gram-negative bacteria) in paddy soil, and up to 75% of total 13C-PLFA distributed in fungal PLFAs was in upland soil. Thus, bacteria dominated the utilization of crop residue in paddy soil versus fungi in upland soil. Compared with that in upland soil, the microbial activity was suppressed in the anaerobic condition caused by flooding in paddy soil, with a stronger inhibition of fungi than bacteria. Considering the discrepancies of life strategies and necromass turnover between bacteria and fungi, the different dominant microbial groups in the utilization of crop residue in water-logged and well-drained conditions could lead to the distinct accumulation and stabilization of microbial-derived organic matter in paddy and upland soils.


Subject(s)
Oryza , Soil , Agriculture , Carbon , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...