Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; : 6158-6165, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836585

ABSTRACT

We combine in situ laser spectroscopy, quantum chemistry, and kinetic calculations to study the reaction of a singlet oxygen atom with dimethyl ether. Infrared laser absorption spectroscopy and Faraday rotation spectroscopy are used for the detection and quantification of the reaction products OH, H2O, HO2, and CH2O on submillisecond time scales. Fitting temporal profiles of products with simulations using an in-house reaction mechanism allows product branching to be quantified at 30, 60, and 150 Torr. The experimentally determined product branching agrees well with master equation calculations based on electronic structure data and transition state theory. The calculations demonstrate that the dimethyl peroxide (CH3OOCH3) generated via O-insertion into the C-O bond undergoes subsequent dissociation to CH3O + CH3O through energetically favored reactions without an intrinsic barrier. This O-insertion mechanism can be important for understanding the fate of biofuels leaking into the atmosphere and for plasma-based biofuel processing technologies.

2.
Nat Commun ; 15(1): 3092, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600079

ABSTRACT

Manipulating surface charge, electric field, and plasma afterglow in a non-equilibrium plasma is critical to control plasma-surface interaction for plasma catalysis and manufacturing. Here, we show enhancements of surface charge, electric field during breakdown, and afterglow by ferroelectric barrier discharge. The results show that the ferroelectrics manifest spontaneous electric polarization to increase the surface charge by two orders of magnitude compared to discharge with an alumina barrier. Time-resolved in-situ electric field measurements reveal that the fast polarization of ferroelectrics enhances the electric field during the breakdown in streamer discharge and doubles the electric field compared to the dielectric barrier discharge. Moreover, due to the existence of surface charge, the ferroelectric electrode extends the afterglow time and makes discharge sustained longer when alternating the external electric field polarity. The present results show that ferroelectric barrier discharge offers a promising technique to tune plasma properties for efficient plasma catalysis and electrified manufacturing.

SELECTION OF CITATIONS
SEARCH DETAIL
...