Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 267(Pt 1): 131387, 2024 May.
Article in English | MEDLINE | ID: mdl-38582470

ABSTRACT

A novel Lentinus edodes mycelia polysaccharide (LMP) prepared in our laboratory has been identified to be effective in inhibiting the damage of islet ß cells induced by glucose toxicity. However, whether it can effectively alleviate the pyroptosis of human umbilical vein endothelial cells (HUVECs) induced by advanced glycation end products (AGEs) remains unclear. Bioinformatics and cell biology techniques were used to explore the mechanism of LMP inhibiting AGEs-induced HUVECs damage. The results indicated that AGEs significantly increased the expression of LncRNA MALAT1, decreased cell viability to 79.67 %, increased intracellular ROS level to 248.19 % compared with the control group, which further led to cell membrane rupture. The release of LDH in cellular supernatant was increased to 149.42 %, and the rate of propidium iodide staining positive cells increased to 277.19 %, indicating the cell pyroptosis occurred. However, the above trend was effectively retrieved after the treatment with LMP. LMP effectively decreased the expression of LncRNA MALAT1 and mTOR, promoted the expression of miR-199b, inhibited AGEs-induced HUVECs pyroptosis by regulating the NLRP3/Caspase-1/GSDMD pathway. LncRNA MALAT1 might be a new target for LMP to inhibit AGEs-induced HUVECs pyroptosis. This study manifested the role of LMP in improving diabetes angiopathy and broadens the application of polysaccharide.


Subject(s)
Caspase 1 , Gasdermins , Glycation End Products, Advanced , Human Umbilical Vein Endothelial Cells , MicroRNAs , Mycelium , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , RNA, Long Noncoding , Shiitake Mushrooms , Signal Transduction , TOR Serine-Threonine Kinases , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Pyroptosis/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , TOR Serine-Threonine Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Caspase 1/metabolism , Shiitake Mushrooms/chemistry , Glycation End Products, Advanced/metabolism , Signal Transduction/drug effects , Mycelium/chemistry , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Cell Survival/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry
2.
J Mol Recognit ; 36(8): e3046, 2023 08.
Article in English | MEDLINE | ID: mdl-37455320

ABSTRACT

As a natural carrier protein, zein was intensively studied for the construction of a flavonoid delivery system. Chrysin has presented superior tumor-resistant, anti-inflammatory, and anti-oxidation potentials among the flavonoid candidates in clinical practice. However, due to inadequate research, the binding mechanism and structural affinity of zein to chrysin are still indeterminate. Therefore, multispectral methods were employed to explore the molecular interaction of zein and chrysin in this work. These techniques showed that chrysin reduced the intrinsic fluorescence of zein via a static process and that the interaction between zein and chrysin was mainly driven spontaneously by hydrophobic forces. Additionally, the experimental results revealed the changed microenvironment in the vicinity of tyrosine and affected secondary structure in the presence of chrysin, indicating zein's conformation were altered by chrysin. This work provided comprehensive insight into the combination of plant-derived protein (zein) and flavonoids (chrysin) and helped rationalize the protection, transportation, and release of chrysin through a zein-based delivery system.


Subject(s)
Zein , Zein/chemistry , Flavonoids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...