Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474664

ABSTRACT

AlGaN-based LEDs are promising for many applications in deep ultraviolet fields, especially for water-purification projects, air sterilization, fluorescence sensing, etc. However, in order to realize these potentials, it is critical to understand the factors that influence the optical and electrical properties of the device. In this work, AlxGa1-xN (x = 0.24, 0.34, 0.47) epilayers grown on c-plane patterned sapphire substrate with GaN template by the metal organic chemical vapor deposition (MOCVD). It is demonstrated that the increase of the aluminum content leads to the deterioration of the surface morphology and crystal quality of the AlGaN epitaxial layer. The dislocation densities of AlxGa1-xN epilayers were determined from symmetric and asymmetric planes of the ω-scan rocking curve and the minimum value is 1.01 × 109 cm-2. The (101¯5) plane reciprocal space mapping was employed to measure the in-plane strain of the AlxGa1-xN layers grown on GaN. The surface barrier heights of the AlxGa1-xN samples derived from XPS are 1.57, 1.65, and 1.75 eV, respectively. The results of the bandgap obtained by PL spectroscopy are in good accordance with those of XRD. The Hall mobility and sheet electron concentration of the samples are successfully determined by preparing simple indium sphere electrodes.

2.
Nanomaterials (Basel) ; 12(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36432223

ABSTRACT

The high crystal quality and low dislocation densities of aluminum nitride (AlN) grown on flat and nano-patterned sapphire substrate that are synthesized by the metal-organic chemical vapor deposition (MOCVD) method are essential for the realization of high-efficiency deep ultraviolet light-emitting diodes. The micro-strains of 0.18 × 10-3 cm-2 for flat substrate AlN and 0.11 × 10-3 cm-2 for nano-patterned substrate AlN are obtained by X-ray diffractometer (XRD). The screw and edge dislocation densities of samples are determined by XRD and transmission electron microscope (TEM), and the results indicate that the nano-patterned substrates are effective in reducing the threading dislocation density. The mechanism of the variation of the threading dislocation in AlN films grown on flat and nano-patterned substrates is investigated comparatively. The etch pit density (EPD) determined by preferential chemical etching is about 1.04 × 108 cm-2 for AlN grown on a nano-patterned substrate, which is slightly smaller than the results obtained by XRD and TEM investigation. Three types of etch pits with different sizes are all revealed on the AlN surface using the hot KOH etching method.

3.
Nanomaterials (Basel) ; 12(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36364507

ABSTRACT

The current pandemic crisis caused by SARS-CoV-2 has also pushed researchers to work on LEDs, especially in the range of 220-240 nm, for the purpose of disinfecting the environment, but the efficiency of such deep UV-LEDs is highly demanding for mass adoption. Over the last two decades, several research groups have worked out that the optical power of GaN-based LEDs significantly decreases during operation, and with the passage of time, many mechanisms responsible for the degradation of such devices start playing their roles. Only a few attempts, to explore the reliability of these LEDs, have been presented so far which provide very little information on the output power degradation of these LEDs with the passage of time. Therefore, the aim of this review is to summarize the degradation factors of AlGaN-based near UV-LEDs emitting in the range of 200-350 nm by means of combined optical and electrical characterization so that work groups may have an idea of the issues raised to date and to achieve a wavelength range needed for disinfecting the environment from SARS-CoV-2. The performance of devices submitted to different stress conditions has been reviewed for the reliability of AlGaN-based UV-LEDs based on the work of different research groups so far, according to our knowledge. In particular, we review: (1) fabrication strategies to improve the efficiency of UV-LEDs; (2) the intensity of variation under constant current stress for different durations; (3) creation of the defects that cause the degradation of LED performance; (4) effect of degradation on C-V characteristics of such LEDs; (5) I-V behavior variation under stress; (6) different structural schemes to enhance the reliability of LEDs; (7) reliability of LEDs ranging from 220-240 nm; and (8) degradation measurement strategies. Finally, concluding remarks for future research to enhance the reliability of near UV-LEDs is presented. This draft presents a comprehensive review for industry and academic research on the physical properties of an AlGaN near UV-LEDs that are affected by aging to help LED manufacturers and end users to construct and utilize such LEDs effectively and provide the community a better life standard.

4.
Molecules ; 26(2)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477519

ABSTRACT

Dielectric capacitors are widely used in pulse power systems, electric vehicles, aerospace, and defense technology as they are crucial for electronic components. Compact, lightweight, and diversified designs of electronic components are prerequisites for dielectric capacitors. Additionally, wide temperature stability and high energy storage density are equally important for dielectric materials. Ferroelectric materials, as special (spontaneously polarized) dielectric materials, show great potential in the field of pulse power capacitors having high dielectric breakdown strength, high polarization, low-temperature dependence and high energy storage density. The first part of this review briefly introduces dielectric materials and their energy storage performance. The second part elaborates performance characteristics of various ferroelectric materials in energy storage and refrigeration based on electrocaloric effect and briefly shed light on advantages and disadvantages of various common ferroelectric materials. Especially, we summarize the polarization effects of underlying substrates (such as GaN and Si) on the performance characteristics of ferroelectric materials. Finally, the review will be concluded with an outlook, discussing current challenges in the field of dielectric materials and prospective opportunities to assess their future progress.


Subject(s)
Cold Temperature , Electric Capacitance , Electric Power Supplies/trends , Electricity , Energy Metabolism , Polymers/chemistry
5.
Materials (Basel) ; 13(16)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796564

ABSTRACT

Group III-V semiconductors with direct band gaps have become crucial for optoelectronic and microelectronic applications. Exploring these materials for spintronic applications is an important direction for many research groups. In this study, pure and cobalt doped GaN nanowires were grown on the Si substrate by the chemical vapor deposition (CVD) method. Sophisticated characterization techniques such as X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), Transmission Electron Microscopy (TEM), High-Resolution Transmission Electron Microscopy (HRTEM) and photoluminescence (PL) were used to characterize the structure, morphology, composition and optical properties of the nanowires. The doped nanowires have diameters ranging from 60-200 nm and lengths were found to be in microns. By optimizing the synthesis process, pure, smooth, single crystalline and highly dense nanowires have been grown on the Si substrate which possess better magnetic and optical properties. No any secondary phases were observed even with 8% cobalt doping. The magnetic properties of cobalt doped GaN showed a ferromagnetic response at room temperature. The value of saturation magnetization is found to be increased with increasing doping concentration and magnetic saturation was found to be 792.4 µemu for 8% cobalt doping. It was also depicted that the Co atoms are substituted at Ga sites in the GaN lattice. Furthermore N vacancies are also observed in the Co-doped GaN nanowires which was confirmed by the PL graph exhibiting nitrogen vacancy defects and strain related peaks at 455 nm (blue emission). PL and magnetic properties show their potential applications in spintronics.

6.
Sci Bull (Beijing) ; 65(1): 7-11, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-36659071

ABSTRACT

We study the expansion behaviors of a Fermionic superfluid in a cigar-shaped optical dipole trap for the whole BEC-BCS crossover and various temperatures. At low temperature (0.06(1)TF), the atom cloud undergoes an anisotropic hydrodynamic expansion over 30 ms, which behaves like oscillation in the horizontal plane. By analyzing the expansion dynamics according to the superfluid hydrodynamic equation, the effective polytropic index γ¯ of Equation-of-State (EoS) of Fermionic superfluid is extracted. The γ¯ values show a non-monotonic behavior over the BEC-BCS crossover, and have a good agreement with the theoretical results in the unitarity and BEC side. The normalized quasi-frequencies of the oscillatory expansion are measured, which drop significantly from the BEC side to the BCS side and reach a minimum value of 1.73 around 1/kFa=-0.25. Our work improves the understanding of the dynamic properties of strongly interacting Fermi gas.

7.
Materials (Basel) ; 12(21)2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31694269

ABSTRACT

The Ba(1-x)CaxZryTi(1-y)O3 (BCZT), a lead-free ceramic material, has attracted the scientific community since 2009 due to its large piezoelectric coefficient and resulting high dielectric permittivity. This perovskite material is a characteristic dielectric material for the pulsed power capacitors industry currently, which in turn leads to devices for effective storage and supply of electric energy. After this remarkable achievement in the area of lead-free piezoelectric ceramics, the researchers are exploring both the bulk as well as thin films of this perovskite material. It is observed that the thin film of this materials have outstandingly high power densities and high energy densities which is suitable for electrochemical supercapacitor applications. From a functional materials point of view this material has also gained attention in multiferroic composite material as the ferroelectric constituent of these composites and has provided extraordinary electric properties. This article presents a review on the relevant scientific advancements that have been made by using the BCZT materials for electric energy storage applications by optimizing its dielectric properties. The article starts with a BCZT introduction and discussion of the need of this material for high energy density capacitors, followed by different synthesis techniques and the effect on dielectric properties of doping different materials in BCZT. The advantages of thin film BCZT material over bulk counterparts are also discussed and its use as one of the constituents of mutiferroic composites is also presented. Finally, it summarizes the future prospects of this material followed by the conclusions.

SELECTION OF CITATIONS
SEARCH DETAIL
...