Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 27(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432211

ABSTRACT

To find the most optimal green valorization process of food by-products, sugar beet (Beta vulgaris L.) leaves (SBLs) were freeze-dried and ground with/without liquid nitrogen (LN), as a simple sample pretreatment method, before ultrasound-assisted extraction (UAE) of polyphenols. First, the water activity, proximate composition, amino acid (AA) and fatty acid (FA) profiles, and polyphenol oxidase (PPO) activity of dried and fresh SBLs were evaluated. Then, conventional extraction (CE) and UAE of polyphenols from SBLs using water/EtOH:water 14:6 (v/v) as extracting solvents were performed to determine the individual and combined effects of the sample preparation method and UAE. In all the freeze-dried samples, the specific activity of PPO decreased significantly (p ≤ 0.05). Freeze-drying significantly increased (p ≤ 0.05) the fiber and essential FA contents of SBLs. The FA profile of SBLs revealed that they are rich sources of oleic, linoleic, and α-linolenic acids. Although freeze-drying changed the contents of most AAs insignificantly, lysine increased significantly from 7.06 ± 0.46% to 8.32 ± 0.38%. The aqueous UAE of the freeze-dried samples without LN pretreatment yielded the most optimal total phenolic content (TPC) (69.44 ± 0.15 mg gallic acid equivalent/g dry matter (mg GAE/g DM)) and excellent antioxidant activities. Thus, combining freeze-drying with the aqueous UAE method could be proposed as a sustainable strategy for extracting bioactive compounds from food by-products.


Subject(s)
Beta vulgaris , Plant Extracts/chemistry , Plant Leaves/chemistry , Polyphenols/analysis , Vegetables , Water/analysis , Sugars/analysis
2.
Molecules ; 26(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34500632

ABSTRACT

In the Valpolicella area (Verona, Italy) Vitis vinifera cv. Corvina is the main grape variety used to produce Amarone wine. Before starting the winemaking process, the Corvina grapes are stored in a withering (i.e., dehydrating) warehouse until about 30% of the berry weight is lost (WL). This practice is performed to concentrate the metabolites in the berry and enrich the Amarone wine in aroma and antioxidant compounds. In compliance with the guidelines and strict Amarone protocol set by the Consorzio of Amarone Valpolicella, withering must be carried out by setting the grapes in a suitable environment, either under controlled relative air humidity (RH) conditions and wind speed (WS)-no temperature modification is to be applied-or, following the traditional methods, in non-controlled environmental conditions. In general, the two processes have different dehydration kinetics due to the different conditions in terms of temperature, RH, and WS, which affect the accumulation of sugars and organic acids and the biosynthesis of secondary metabolites such as stilbenes and glycoside aroma precursors. For this study, the two grape-withering processes were carried out under controlled (C) and non-controlled (NC) conditions, and the final compositions of the Corvina dried grapes were compared also to evaluate the effects on the organoleptic characteristics of Amarone wine. The findings highlighted differences between the two processes mainly in terms of the secondary metabolites of the dried grapes, which affect the organoleptic characteristics of Amarone wine. Indeed, by the sensory evaluation, wines produced by adopting the NC process were found more harmonious, elegant, and balanced. Finally, we can state how using a traditional system, grapes were characterised by higher levels of VOCs (volatile compounds), whilst wines had a higher and appreciable complexity and finesse.


Subject(s)
Vitis/chemistry , Volatile Organic Compounds/chemistry , Fruit/chemistry , Glycosides/chemistry , Italy , Mass Spectrometry/methods , Odorants , Sensation/physiology , Stilbenes/chemistry , Wine
SELECTION OF CITATIONS
SEARCH DETAIL