Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Brain Commun ; 6(3): fcae158, 2024.
Article in English | MEDLINE | ID: mdl-38818331

ABSTRACT

Cortical lesions are common in multiple sclerosis and are associated with disability and progressive disease. We asked whether cortical lesions continue to form in people with stable white matter lesions and whether the association of cortical lesions with worsening disability relates to pre-existing or new cortical lesions. Fifty adults with multiple sclerosis and no new white matter lesions in the year prior to enrolment (33 relapsing-remitting and 17 progressive) and a comparison group of nine adults who had formed at least one new white matter lesion in the year prior to enrolment (active relapsing-remitting) were evaluated annually with 7 tesla (T) brain MRI and 3T brain and spine MRI for 2 years, with clinical assessments for 3 years. Cortical lesions and paramagnetic rim lesions were identified on 7T images. Seven total cortical lesions formed in 3/30 individuals in the stable relapsing-remitting group (median 0, range 0-5), four total cortical lesions formed in 4/17 individuals in the progressive group (median 0, range 0-1), and 16 cortical lesions formed in 5/9 individuals in the active relapsing-remitting group (median 1, range 0-10, stable relapsing-remitting versus progressive versus active relapsing-remitting P = 0.006). New cortical lesions were not associated with greater change in any individual disability measure or in a composite measure of disability worsening (worsening Expanded Disability Status Scale or 9-hole peg test or 25-foot timed walk). Individuals with at least three paramagnetic rim lesions had a greater increase in cortical lesion volume over time (median 16 µl, range -61 to 215 versus median 1 µl, range -24 to 184, P = 0.007), but change in lesion volume was not associated with disability change. Baseline cortical lesion volume was higher in people with worsening disability (median 1010 µl, range 13-9888 versus median 267 µl, range 0-3539, P = 0.001, adjusted for age and sex) and in individuals with relapsing-remitting multiple sclerosis who subsequently transitioned to secondary progressive multiple sclerosis (median 2183 µl, range 270-9888 versus median 321 µl, range 0-6392 in those who remained relapsing-remitting, P = 0.01, adjusted for age and sex). Baseline white matter lesion volume was not associated with worsening disability or transition from relapsing-remitting to secondary progressive multiple sclerosis. Cortical lesion formation is rare in people with stable white matter lesions, even in those with worsening disability. Cortical but not white matter lesion burden predicts disability worsening, suggesting that disability progression is related to long-term effects of cortical lesions that form early in the disease, rather than to ongoing cortical lesion formation.

2.
Front Neuroanat ; 18: 1372953, 2024.
Article in English | MEDLINE | ID: mdl-38659652

ABSTRACT

Background: Brain banks provide small tissue samples to researchers, while gross anatomy laboratories could provide larger samples, including complete brains to neuroscientists. However, they are preserved with solutions appropriate for gross-dissection, different from the classic neutral-buffered formalin (NBF) used in brain banks. Our previous work in mice showed that two gross-anatomy laboratory solutions, a saturated-salt-solution (SSS) and an alcohol-formaldehyde-solution (AFS), preserve antigenicity of the main cellular markers (neurons, astrocytes, microglia, and myelin). Our goal is now to compare the quality of histology and antigenicity preservation of human brains fixed with NBF by immersion (practice of brain banks) vs. those fixed with a SSS and an AFS by whole body perfusion, practice of gross-anatomy laboratories. Methods: We used a convenience sample of 42 brains (31 males, 11 females; 25-90 years old) fixed with NBF (N = 12), SSS (N = 13), and AFS (N = 17). One cm3 tissue blocks were cut, cryoprotected, frozen and sliced into 40 µm sections. The four cell populations were labeled using immunohistochemistry (Neurons = neuronal-nuclei = NeuN, astrocytes = glial-fibrillary-acidic-protein = GFAP, microglia = ionized-calcium-binding-adaptor-molecule1 = Iba1 and oligodendrocytes = myelin-proteolipid-protein = PLP). We qualitatively assessed antigenicity and cell distribution, and compared the ease of manipulation of the sections, the microscopic tissue quality, and the quality of common histochemical stains (e.g., Cresyl violet, Luxol fast blue, etc.) across solutions. Results: Sections of SSS-fixed brains were more difficult to manipulate and showed poorer tissue quality than those from brains fixed with the other solutions. The four antigens were preserved, and cell labeling was more often homogeneous in AFS-fixed specimens. NeuN and GFAP were not always present in NBF and SSS samples. Some antigens were heterogeneously distributed in some specimens, independently of the fixative, but an antigen retrieval protocol successfully recovered them. Finally, the histochemical stains were of sufficient quality regardless of the fixative, although neurons were more often paler in SSS-fixed specimens. Conclusion: Antigenicity was preserved in human brains fixed with solutions used in human gross-anatomy (albeit the poorer quality of SSS-fixed specimens). For some specific variables, histology quality was superior in AFS-fixed brains. Furthermore, we show the feasibility of frequently used histochemical stains. These results are promising for neuroscientists interested in using brain specimens from anatomy laboratories.

3.
medRxiv ; 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37886541

ABSTRACT

Background and objectives: Cortical lesions (CL) are common in multiple sclerosis (MS) and associate with disability and progressive disease. We asked whether CL continue to form in people with stable white matter lesions (WML) and whether the association of CL with worsening disability relates to pre-existing or new CL. Methods: A cohort of adults with MS were evaluated annually with 7 tesla (T) brain magnetic resonance imaging (MRI) and 3T brain and spine MRI for 2 years, and clinical assessments for 3 years. CL were identified on 7T images at each timepoint. WML and brain tissue segmentation were performed using 3T images at baseline and year 2. Results: 59 adults with MS had ≥1 7T follow-up visit (mean follow-up time 2±0.5 years). 9 had "active" relapsing-remitting MS (RRMS), defined as new WML in the year prior to enrollment. Of the remaining 50, 33 had "stable" RRMS, 14 secondary progressive MS (SPMS), and 3 primary progressive MS. 16 total new CL formed in the active RRMS group (median 1, range 0-10), 7 in the stable RRMS group (median 0, range 0-5), and 4 in the progressive MS group (median 0, range 0-1) (p=0.006, stable RR vs PMS p=0.88). New CL were not associated with greater change in any individual disability measure or in a composite measure of disability worsening (worsening Expanded Disability Status Scale or 9-hole peg test or 25-foot timed walk). Baseline CL volume was higher in people with worsening disability (median 1010µl, range 13-9888 vs median 267µl, range 0-3539, p=0.001, adjusted for age and sex) and in individuals with RRMS who subsequently transitioned to SPMS (median 2183µl, range 270-9888 vs median 321µl, range 0-6392 in those who remained RRMS, p=0.01, adjusted for age and sex). Baseline WML volume was not associated with worsening disability or transition from RRMS to SPMS. Discussion: CL formation is rare in people with stable WML, even in those with worsening disability. CL but not WML burden predicts future worsening of disability, suggesting that the relationship between CL and disability progression is related to long-term effects of lesions that form in the earlier stages of disease, rather than to ongoing lesion formation.

4.
Neurology ; 101(8): e815-e824, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37407262

ABSTRACT

BACKGROUND AND OBJECTIVES: White matter hyperintensities (WMH) are pathologic brain changes that are associated with increased age and cognitive decline. However, the association of WMH burden with amyloid positivity and conversion to dementia in people with mild cognitive impairment (MCI) is unclear. The aim of this study was to expand on this research by examining whether change in WMH burden over time differs in amyloid-negative (Aß-) and amyloid-positive (Aß+) people with MCI who either remain stable or convert to dementia. To examine this question, we compared regional WMH burden in 4 groups: Aß+ progressor, Aß- progressor, Aß+ stable, and Aß- stable. METHODS: Participants with MCI from the Alzheimer Disease Neuroimaging Initiative were included if they had APOE ɛ4 status and if amyloid measures were available to determine amyloid status (i.e., Aß+, or Aß-). Participants with a baseline diagnosis of MCI and who had APOE ɛ4 information and amyloid measures were included. An average of 5.7 follow-up time points per participant were included, with a total of 5,054 follow-up time points with a maximum follow-up duration of 13 years. Differences in total and regional WMH burden were examined using linear mixed-effects models. RESULTS: A total of 820 participants (55-90 years of age) were included in the study (Aß+ progressor, n = 239; Aß- progressor, n = 22; Aß+ stable, n = 343; Aß- stable, n = 216). People who were Aß- stable exhibited reduced baseline WMH compared with Aß+ progressors and people who were Aß+ stable at all regions of interest (ß belongs to 0.20-0.33, CI belongs to 0.03-0.49, p < 0.02), except deep WMH. When examining longitudinal results, compared with people who were Aß- stable, all groups had steeper accumulation in WMH burden with Aß+ progressors (ß belongs to -0.03 to 0.06, CI belongs to -0.05 to 0.09, p < 0.01) having the largest increase (i.e., largest increase in WMH accumulation over time). DISCUSSION: These results indicate that WMH accumulation contributes to conversion to dementia in older adults with MCI who are Aß+ and Aß-.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , White Matter , Humans , Aged , White Matter/pathology , Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/psychology , Alzheimer Disease/pathology , Apolipoproteins E , Magnetic Resonance Imaging
5.
Geroscience ; 45(1): 1-16, 2023 02.
Article in English | MEDLINE | ID: mdl-36229760

ABSTRACT

White matter hyperintensities (WMHs) are pathological changes that occur with increased age and are associated with cognitive decline. Most WMH research has not examined regional differences and focuses on a whole-brain approach. This study examined regional WMHs between normal controls (NCs), people with mild cognitive impairment (MCI), and Alzheimer's disease (AD). We also examined whether WMHs were associated with cognitive decline. Participants from the Alzheimer's Disease Neuroimaging Initiative were included if they had at least one WMH measurement and cognitive scores examining global cognition, executive functioning, and memory. Only amyloid-positive MCI and AD participants were included. A total of 1573 participants with 7381 timepoints over a maximum period of 13 years were included. Linear mixed-effects models examined group differences in WMH burden and associations between WMH burden and cognition. People with MCI and AD had increased total and regional WMHs compared to NCs. An association between WMHs and cognition was observed for global cognition, executive functioning, and memory in NCs in all regions. A steeper decline (stronger association between WMH and cognition) was observed in MCI compared to NCs for all cognitive domains in all regions. A steeper decline was observed in AD compared to NCs for global cognition in only the temporal region. A strong association is observed between all cognitive domains of interest and WMH burden in healthy aging and MCI, while those with AD only had a few associations between WMH and global cognition. These findings suggest that the WMH burden is associated with changes in cognition in healthy aging and early cognitive decline.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , White Matter , Humans , Alzheimer Disease/complications , Magnetic Resonance Imaging/methods , Cognitive Dysfunction/pathology , Cognition
6.
Front Neuroanat ; 16: 957358, 2022.
Article in English | MEDLINE | ID: mdl-36312297

ABSTRACT

Background: Histology remains the gold-standard to assess human brain biology, so ex vivo studies using tissue from brain banks are standard practice in neuroscientific research. However, a larger number of specimens could be obtained from gross anatomy laboratories. These specimens are fixed with solutions appropriate for dissections, but whether they also preserve brain tissue antigenicity is unclear. Therefore, we perfused mice brains with solutions used for human body preservation to assess and compare the tissue quality and antigenicity of the main cell populations. Materials and methods: Twenty-eight C57BL/6J mice were perfused with 4% formaldehyde (FAS, N = 9), salt-saturated solution (SSS, N = 9), and alcohol solution (AS, N = 10). The brains were cut into 40 µm sections for antigenicity analysis and were assessed by immunohistochemistry of four antigens: neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP astrocytes), ionized calcium-binding adaptor molecule 1 (Iba1-microglia), and myelin proteolipid protein (PLP). We compared the fixatives according to multiple variables: perfusion quality, ease of manipulation, tissue quality, immunohistochemistry quality, and antigenicity preservation. Results: The perfusion quality was better using FAS and worse using AS. The manipulation was very poor in SSS brains. FAS- and AS-fixed brains showed higher tissue and immunohistochemistry quality than the SSS brains. All antigens were readily observed in every specimen, regardless of the fixative solution. Conclusion: Solutions designed to preserve specimens for human gross anatomy dissections also preserve tissue antigenicity in different brain cells. This offers opportunities for the use of human brains fixed in gross anatomy laboratories to assess normal or pathological conditions.

7.
Neuroimage Clin ; 36: 103204, 2022.
Article in English | MEDLINE | ID: mdl-36155321

ABSTRACT

INTRODUCTION: White matter hyperintensities (WMHs) are common magnetic resonance imaging (MRI) findings in the aging population in general, as well as in patients with neurodegenerative diseases. They are known to exacerbate the cognitive deficits and worsen the clinical outcomes in the patients. However, it is not well-understood whether there are disease-specific differences in prevalence and distribution of WMHs in different neurodegenerative disorders. METHODS: Data included 976 participants with cross-sectional T1-weighted and fluid attenuated inversion recovery (FLAIR) MRIs from the Comprehensive Assessment of Neurodegeneration and Dementia (COMPASS-ND) cohort of the Canadian Consortium on Neurodegeneration in Aging (CCNA) with eleven distinct diagnostic groups: cognitively intact elderly (CIE), subjective cognitive impairment (SCI), mild cognitive impairment (MCI), vascular MCI (V-MCI), Alzheimer's dementia (AD), vascular AD (V-AD), frontotemporal dementia (FTD), Lewy body dementia (LBD), cognitively intact elderly with Parkinson's disease (PD-CIE), cognitively impaired Parkinson's disease (PD-CI), and mixed dementias. WMHs were segmented using a previously validated automated technique. WMH volumes in each lobe and hemisphere were compared against matched CIE individuals, as well as each other, and between men and women. RESULTS: All cognitively impaired diagnostic groups had significantly greater overall WMH volumes than the CIE group. Vascular groups (i.e. V-MCI, V-AD, and mixed dementia) had significantly greater WMH volumes than all other groups, except for FTD, which also had significantly greater WMH volumes than all non-vascular groups. Women tended to have lower WMH burden than men in most groups and regions, controlling for age. The left frontal lobe tended to have a lower WMH burden than the right in all groups. In contrast, the right occipital lobe tended to have greater WMH volumes than the left. CONCLUSIONS: There were distinct differences in WMH prevalence and distribution across diagnostic groups, sexes, and in terms of asymmetry. WMH burden was significantly greater in all neurodegenerative dementia groups, likely encompassing areas exclusively impacted by neurodegeneration as well as areas related to cerebrovascular disease pathology.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Frontotemporal Dementia , Leukoaraiosis , Neurodegenerative Diseases , Parkinson Disease , White Matter , Male , Humans , Female , Aged , White Matter/diagnostic imaging , White Matter/pathology , Parkinson Disease/pathology , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/pathology , Cross-Sectional Studies , Canada , Cognitive Dysfunction/pathology , Alzheimer Disease/pathology , Magnetic Resonance Imaging/methods , Aging , Frontotemporal Dementia/pathology
8.
Cent European J Urol ; 75(2): 145-152, 2022.
Article in English | MEDLINE | ID: mdl-35937662

ABSTRACT

Introduction: Surgical treatment of kidney cancer with a tumor thrombus spreading through the inferior vena cava (IVC) up to the right atrium remains a challenge.The aim of this article was to 1. assess the safety and feasibility of four transdiaphragmatic surgical approaches to the right atrium from the abdominal cavity; 2. to evaluate the feasibility of palpation and displacement of thrombi below the diaphragm. Material and methods: Four cadaveric specimens preserved with the Thiel method to assess each surgical access: 1) extrapericardial T-shaped diaphragmotomy, 2) extrapericardial T-shaped + circular diaphragmotomy, 3) transpericardial T-shaped diaphragmotomy with longitudinal pericardiotomy, 4) transpericardial T-shaped + circular diaphragmotomy with longitudinal and circular pericardiotomy.Different diameters and density of tumor thrombus simulators, placed at various levels from the cava-diaphragm junction, were used to evaluate the palpation and displacement of the thrombus. Two surgeons performed each assessment independently. Results: Approaches 2, 3 and 4 were significantly better than approach 1, regarding the feasibility of palpation, according to both surgeons (surgeon 1 Chi-square 21.56, p = 0.001; surgeon 2 Chi-square 27.83, p <0.0001). Approach 1 also showed a significant higher number of impossible displacements recorded by both surgeons (surgeon 1 Chi-square 19.02, p = 0.004; surgeon 2 Chi-square 20.01, p = 0.003). Only surgeon 1 recorded a significant lower number of easy palpations at 4 cm from the cava-diaphragm junction (Chi-square 14.10, p = 0.007). There were no high-risk complications in any approach. Conclusions: The transdiaphragmatic access to the right atrium from the abdominal cavity is feasible using three of the four surgical approaches. They are an adequate alternative to sternotomy.

9.
NMR Biomed ; 35(8): e4730, 2022 08.
Article in English | MEDLINE | ID: mdl-35297114

ABSTRACT

Manually segmenting multiple sclerosis (MS) cortical lesions (CLs) is extremely time consuming, and past studies have shown only moderate inter-rater reliability. To accelerate this task, we developed a deep-learning-based framework (CLAIMS: Cortical Lesion AI-Based Assessment in Multiple Sclerosis) for the automated detection and classification of MS CLs with 7 T MRI. Two 7 T datasets, acquired at different sites, were considered. The first consisted of 60 scans that include 0.5 mm isotropic MP2RAGE acquired four times (MP2RAGE×4), 0.7 mm MP2RAGE, 0.5 mm T2 *-weighted GRE, and 0.5 mm T2 *-weighted EPI. The second dataset consisted of 20 scans including only 0.75 × 0.75 × 0.9 mm3 MP2RAGE. CLAIMS was first evaluated using sixfold cross-validation with single and multi-contrast 0.5 mm MRI input. Second, the performance of the model was tested on 0.7 mm MP2RAGE images after training with either 0.5 mm MP2RAGE×4, 0.7 mm MP2RAGE, or alternating the two. Third, its generalizability was evaluated on the second external dataset and compared with a state-of-the-art technique based on partial volume estimation and topological constraints (MSLAST). CLAIMS trained only with MP2RAGE×4 achieved results comparable to those of the multi-contrast model, reaching a CL true positive rate of 74% with a false positive rate of 30%. Detection rate was excellent for leukocortical and subpial lesions (83%, and 70%, respectively), whereas it reached 53% for intracortical lesions. The correlation between disability measures and CL count was similar for manual and CLAIMS lesion counts. Applying a domain-scanner adaptation approach and testing CLAIMS on the second dataset, the performance was superior to MSLAST when considering a minimum lesion volume of 6 µL (lesion-wise detection rate of 71% versus 48%). The proposed framework outperforms previous state-of-the-art methods for automated CL detection across scanners and protocols. In the future, CLAIMS may be useful to support clinical decisions at 7 T MRI, especially in the field of diagnosis and differential diagnosis of MS patients.


Subject(s)
Deep Learning , Multiple Sclerosis , Humans , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Reproducibility of Results
10.
Mult Scler ; 28(9): 1351-1363, 2022 08.
Article in English | MEDLINE | ID: mdl-35142571

ABSTRACT

BACKGROUND: Dramatic improvements in visualization of cortical (especially subpial) multiple sclerosis (MS) lesions allow assessment of impact on clinical course. OBJECTIVE: Characterize cortical lesions by 7 tesla (T) T2*-/T1-weighted magnetic resonance imaging (MRI); determine relationship with other MS pathology and contribution to disability. METHODS: Sixty-four adults with MS (45 relapsing-remitting/19 progressive) underwent 3 T brain/spine MRI, 7 T brain MRI, and clinical testing. RESULTS: Cortical lesions were found in 94% (progressive: median 56/range 2-203; relapsing-remitting: 15/0-168; p = 0.004). Lesion distribution across 50 cortical regions was nonuniform (p = 0.006), with highest lesion burden in supplementary motor cortex and highest prevalence in superior frontal gyrus. Leukocortical and white matter lesion volumes were strongly correlated (r = 0.58, p < 0.0001), while subpial and white matter lesion volumes were moderately correlated (r = 0.30, p = 0.002). Leukocortical (p = 0.02) but not subpial lesions (p = 0.40) were correlated with paramagnetic rim lesions; both were correlated with spinal cord lesions (p = 0.01). Cortical lesion volumes (total and subtypes) were correlated with expanded disability status scale, 25-foot timed walk, nine-hole peg test, and symbol digit modality test scores. CONCLUSION: Cortical lesions are highly prevalent and are associated with disability and progressive disease. Subpial lesion burden is not strongly correlated with white matter lesions, suggesting differences in inflammation and repair mechanisms.


Subject(s)
Disabled Persons , Multiple Sclerosis , White Matter , Adult , Brain/pathology , Humans , Magnetic Resonance Imaging/methods , Multiple Sclerosis/pathology , White Matter/pathology
11.
Child Neuropsychol ; 28(5): 649-670, 2022 07.
Article in English | MEDLINE | ID: mdl-34872458

ABSTRACT

Long-term cognitive deficits have been observed in some children who experience an acquired demyelinating syndrome (ADS). We examined changes in cognitive functioning over the first two years following incident ADS andtested whether normalized brain and thalamic volume accounted for decline over time. Twenty-five youth (mean age 12.8 years) with ADS, 9 of whom were diagnosed with multiple sclerosis (MS) and 16 of whom experienced monophasic ADS (monoADS), underwent two neuropsychological evaluationsand MRI scans at approximately6- and 24-months post ADS-onset. We examined changes in cognitive outcomes over time and between patient groups. Generalized linear mixed-effect regression models were used to examine the association of normalized brain and thalamic volumesbetween the two timepointswith cognitive z-scores. Cognitive performance was within the age-expected range for both groups and remained stable over time on 15 measures. In the combined sample of monoADS and MS patients, declines (p < .05) were noted on the Symbol Digit Modalities Test (SDMT), the Auditory Working Memory (AWM), and the WJ-III Visual Matching (VisMat)tests, but did not survive FDR correction. Clinically significant declines, as measured by the Reliable Change Index, were observed on the SDMT,AWM, and VisMattests by 19, 42, and 32%, respectively. Lower normalized brain volume at 6-months predicted a negative change in SDMT (B = 0.45, 95%CI: 0.07,0.83) and AWM (B = 0.30, 95%CI: 0.13, 0.47). Chronicity of demyelination is not required for cognitive decline nor for reduced brain volume, suggesting that even a single demyelinating event may negatively impact cognitive potential in children.


Subject(s)
Cognitive Dysfunction , Multiple Sclerosis , Adolescent , Child , Cognition , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Humans , Longitudinal Studies , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Neuropsychological Tests , Syndrome
12.
Front Neuroimaging ; 1: 940849, 2022.
Article in English | MEDLINE | ID: mdl-37555147

ABSTRACT

Introduction: Cerebral microbleeds are small perivascular hemorrhages that can occur in both gray and white matter brain regions. Microbleeds are a marker of cerebrovascular pathology and are associated with an increased risk of cognitive decline and dementia. Microbleeds can be identified and manually segmented by expert radiologists and neurologists, usually from susceptibility-contrast MRI. The latter is hard to harmonize across scanners, while manual segmentation is laborious, time-consuming, and subject to interrater and intrarater variability. Automated techniques so far have shown high accuracy at a neighborhood ("patch") level at the expense of a high number of false positive voxel-wise lesions. We aimed to develop an automated, more precise microbleed segmentation tool that can use standardizable MRI contrasts. Methods: We first trained a ResNet50 network on another MRI segmentation task (cerebrospinal fluid vs. background segmentation) using T1-weighted, T2-weighted, and T2* MRIs. We then used transfer learning to train the network for the detection of microbleeds with the same contrasts. As a final step, we employed a combination of morphological operators and rules at the local lesion level to remove false positives. Manual segmentation of microbleeds from 78 participants was used to train and validate the system. We assessed the impact of patch size, freezing weights of the initial layers, mini-batch size, learning rate, and data augmentation on the performance of the Microbleed ResNet50 network. Results: The proposed method achieved high performance, with a patch-level sensitivity, specificity, and accuracy of 99.57, 99.16, and 99.93%, respectively. At a per lesion level, sensitivity, precision, and Dice similarity index values were 89.1, 20.1, and 0.28% for cortical GM; 100, 100, and 1.0% for deep GM; and 91.1, 44.3, and 0.58% for WM, respectively. Discussion: The proposed microbleed segmentation method is more suitable for the automated detection of microbleeds with high sensitivity.

13.
Brain ; 145(6): 2008-2017, 2022 06 30.
Article in English | MEDLINE | ID: mdl-34927199

ABSTRACT

Diffusely abnormal white matter, characterised by biochemical changes of myelin in the absence of frank demyelination, has been associated with clinical progression in secondary progressive multiple sclerosis. However, little is known about changes of diffusely abnormal white matter over time and their relation to focal white matter lesions. The objectives of this work were: (i) to characterize the longitudinal evolution of focal white matter lesions, diffusely abnormal white matter and diffusely abnormal white matter that transforms into focal white matter lesions; and (ii) to determine whether gadolinium enhancement, known to be associated with the development of new focal white matter lesions, is also related to diffusely abnormal white matter voxels that transform into focal white matter lesions. Our data included 4220 MRI scans of 689 secondary progressive multiple sclerosis participants, followed for 156 weeks, and 2677 scans of 686 relapsing-remitting multiple sclerosis participants, followed for 96 weeks. Focal white matter lesions and diffusely abnormal white matter were segmented using a previously validated, automatic thresholding technique based on normalized T2 intensity values. Using longitudinally registered images, diffusely abnormal white matter voxels at each visit that transformed into focal white matter lesions on the last MRI scan as well as their overlap with gadolinium-enhancing lesion masks were identified. Our results showed that the average yearly rate of conversion of diffusely abnormal white matter to focal white matter lesions was 1.27 cm3 for secondary progressive multiple sclerosis and 0.80 cm3 for relapsing-remitting multiple sclerosis. Focal white matter lesions in secondary progressive multiple sclerosis participants significantly increased (t = 3.9; P = 0.0001) while diffusely abnormal white matter significantly decreased (t = -4.3 P < 0.0001) and the ratio of focal white matter lesions to diffusely abnormal white matter increased (t = 12.7; P < 0.00001). Relapsing-remitting multiple sclerosis participants also showed an increase in the focal white matter lesions to diffusely abnormal white matter ratio (t = 6.9; P < 0.00001) but without a significant change of the individual volumes. Gadolinium enhancement was associated with 7.3% and 18.7% of focal new T2 lesion formation in the infrequent scans of the relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis cohorts, respectively. In comparison, only 0.1% and 0.0% of diffusely abnormal white matter to focal white matter lesions voxels overlapped with gadolinium enhancement. We conclude that diffusely abnormal white matter transforms into focal white matter lesions over time in both relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis. Diffusely abnormal white matter appears to represent a form of pre-lesional pathology that contributes to T2 lesion volume increase over time, independent of new focal inflammation and gadolinium enhancement.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , White Matter , Brain/diagnostic imaging , Brain/pathology , Contrast Media , Gadolinium , Humans , Inflammation/pathology , Magnetic Resonance Imaging/methods , Multiple Sclerosis/pathology , Multiple Sclerosis, Chronic Progressive/pathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/pathology , White Matter/diagnostic imaging , White Matter/pathology
14.
J Plast Reconstr Aesthet Surg ; 74(9): 1999-2004, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33526359

ABSTRACT

BACKGROUND: The thigh region is a well-known area for harvesting cutaneous flaps for microsurgery replacement, given the characteristics of the skin: thin, flexible, and glabrous. We investigated the vascular pattern of 32 cadaveric anteroproximal thighs for the possibility of an extended harvesting area, which we call the proximal femoral artery perforator region. MATERIALS AND METHODS: We injected colored, radio opaque latex in the external iliac artery and investigated the perforator branches from the superficial circumflex iliac, femoral common, superficial, and deep femoral (profunda femoris) arteries to the skin of the proximal femoral artery perforator region. This region was divided into 3 equal subregions (superior, medial, and lateral), and their perforators were counted and measured. RESULTS: There was no significant difference in the number of arterial pedicles across the three subregions: 30 superior, 35 inferolateral, and 27 inferomedial. The perforators had a cutaneous path in 81% of the cases, while 6% were musculocutaneous and 5% septocutaneous, without a significant difference in their proportion in the three subregions. The mean length and diameter of the pedicles were 5.39 ±â€¯2.1 cm and 1.07 ±â€¯0.4 mm, respectively, without significant differences in the three subregions. CONCLUSIONS: The proximal femoral artery perforator region is a suitable area to generate flaps of various sizes and shapes, as needed by the surgeon. All perforators were constant and possessed a sufficient diameter and length for a successful anastomosis during the surgical procedure. The donor site retains all technical advantages to successfully replace areas of glabrous skin.


Subject(s)
Femoral Artery/anatomy & histology , Perforator Flap/blood supply , Thigh/blood supply , Transplant Donor Site/anatomy & histology , Transplant Donor Site/blood supply , Aged , Aged, 80 and over , Anatomic Landmarks , Cadaver , Dissection/methods , Female , Humans , Iliac Artery/anatomy & histology , Male , Microsurgery/methods , Middle Aged , Plastic Surgery Procedures
15.
Mult Scler ; 27(2): 208-219, 2021 02.
Article in English | MEDLINE | ID: mdl-32202199

ABSTRACT

BACKGROUND: Diffusely abnormal white matter (DAWM) regions are observed in magnetic resonance images of secondary progressive multiple sclerosis (SPMS) patients. However, their role in clinical progression is still not established. OBJECTIVES: To characterize the longitudinal volumetric and intensity evolution of DAWM and focal white matter lesions (FWML) and assess their associations with clinical outcomes and progression in SPMS. METHODS: Data include 589 SPMS participants followed up for 3 years (3951 time points). FWML and DAWM were automatically segmented. Screening DAWM volumes that transformed into FWML at the last visit (DAWM-to-FWML) and normalized T1-weighted intensities (indicating severity of damage) in those voxels were calculated. RESULTS: FWML volume increased and DAWM volume decreased with an increase in disease duration (p < 0.001). The Expanded Disability Status Scale (EDSS) was positively associated with FWML volumes (p = 0.002), but not with DAWM. DAWM-to-FWML volume was higher in patients who progressed (2.75 cm3 vs. 1.70 cm3; p < 0.0001). Normalized T1-weighted intensity of DAWM-to-FWML was negatively associated with progression (p < 0.00001). CONCLUSION: DAWM transformed into FWML over time, and this transformation was associated with clinical progression. DAWM-to-FWML voxels had greater normalized T1-weighted intensity decrease over time, in keeping with relatively greater tissue damage. Evaluation of DAWM in progressive multiple sclerosis provides a useful measure for therapies aiming to protect this at-risk tissue with the potential to slow progression.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , White Matter , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , White Matter/diagnostic imaging
16.
J Neurosci Methods ; 345: 108903, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32777310

ABSTRACT

BACKGROUND: MRI-histology correlation studies of the ex vivo brain mostly employ fresh, extracted (ex situ) specimens, aldehyde fixed by immersion, which has several disadvantages for MRI scanning (e.g. deformation of the organ). A minority of studies are done ex vivo-in situ (unfixed brain), requiring an MRI scanner readily available within a few hours of the time of death. NEW METHOD: We propose a new technique, exploited by anatomists, for scanning the ex vivo brain: fixation by whole body perfusion, which implies fixation of the brain in situ. This allows scanning the brain surrounded by fluids, meninges, and skull, preserving the structural relationships of the brain in vivo. To evaluate the proposed method, five heads perfused-fixed with a saturated sodium chloride solution were employed. Three sequences were acquired on a 1.5 T MRI scanner: T1weighted, T2weighted-FLAIR, and Gradient-echo. Histology analysis included immunofluorescence for myelin basic protein and neuronal nuclei. RESULTS: All MRIs were successfully processed through a validated pipeline used with in vivo MRIs. All cases exhibited positive antigenicity for myelin and neuronal nuclei. COMPARISON WITH EXISTING METHODS: All scans registered to a standard neuroanatomical template in pseudo-Talairach space more accurately than an ex vivo-ex situ scan. The time interval to scan the ex vivo brain in situ was increased to at least 10 months. CONCLUSIONS: MRI and histology study of the ex vivo-in situ brain fixed by perfusion is an alternative approach that has important procedural and practical advantages over the two standard methods to study the ex vivo brain.


Subject(s)
Histological Techniques , Magnetic Resonance Imaging , Brain/diagnostic imaging , Humans
17.
Invest Radiol ; 55(11): 727-735, 2020 11.
Article in English | MEDLINE | ID: mdl-32604385

ABSTRACT

OBJECTIVES: Cortical demyelination is common in multiple sclerosis (MS) and can be extensive. Cortical lesions contribute to disability independently from white matter lesions and may form via a distinct mechanism. However, current magnetic resonance imaging methods at 3 T are insensitive to cortical, and especially subpial cortical, lesions. Subpial lesions are well seen on T2*-weighted imaging at 7 T, but T2*-weighted methods on 3 T scanners are limited by poor lesion-to-cortex and cerebrospinal fluid-to-lesion contrast. We aimed to develop and evaluate a cerebrospinal fluid-suppressed, T2*-weighted sequence optimized for subpial cortical lesion visualization. MATERIALS AND METHODS: We developed a new magnetic resonance imaging sequence, inversion recovery susceptibility weighted imaging with enhanced T2 weighting (IR-SWIET; 0.8 mm × 0.8 mm in plane, 0.64 mm slice thickness with whole brain coverage, acquisition time ~5 minutes). We compared cortical lesion visualization independently on IR-SWIET (median signal from 4 acquisitions), magnetization-prepared 2 rapid acquisition gradient echoes (MP2RAGE), double inversion recovery (DIR), T2*-weighted segmented echo-planar imaging, and phase-sensitive inversion recovery images for 10 adults with MS. We also identified cortical lesions with a multicontrast reading of IR-SWIET (median of 2 acquisitions), MP2RAGE, and fluid-attenuated inversion recovery (FLAIR) images for each case. Lesions identified on 3 T images were verified on "gold standard" 7 T T2* and MP2RAGE images. RESULTS: Cortical, and particularly subpial, lesions appeared much more conspicuous on IR-SWIET compared with other 3 T methods. A total of 101 true-positive subpial lesions were identified on IR-SWIET (average per-participant sensitivity vs 7 T, 29% ± 8%) versus 36 on MP2RAGE (5% ± 2%; comparison to IR-SWIET sensitivity, P = 0.07), 17 on FLAIR (2% ± 1%; P < 0.05), 28 on DIR (6% ± 2%; P < 0.05), 42 on T2*-weighted segmented echo-planar imaging (11% ± 5%; P < 0.05), and 13 on phase-sensitive inversion recovery (4% ± 2%; P < 0.05). When a combination of IR-SWIET, MP2RAGE, and FLAIR images was used, a total of 147 subpial lesions (30% ± 5%) were identified versus 83 (16% ± 3%, P < 0.01) on a combination of DIR, MP2RAGE, and FLAIR. More cases had at least 1 subpial lesion on IR-SWIET, and IR-SWIET improved cortical lesion subtyping accuracy and correlation with 7 T subpial lesion number. CONCLUSIONS: Subpial lesions are better visualized on IR-SWIET compared with other 3 T methods. A 3 T protocol combining IR-SWIET with MP2RAGE, in which leukocortical lesions are well seen, improves cortical lesion visualization over existing approaches. Therefore, IR-SWIET may enable improved MS diagnostic specificity and a better understanding of the clinical implications of cortical demyelination.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Adult , Brain/diagnostic imaging , Brain/pathology , Female , Humans , Male , Middle Aged , Multiple Sclerosis/pathology , Young Adult
18.
Brain ; 143(7): 2089-2105, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32572488

ABSTRACT

Despite important efforts to solve the clinico-radiological paradox, correlation between lesion load and physical disability in patients with multiple sclerosis remains modest. One hypothesis could be that lesion location in corticospinal tracts plays a key role in explaining motor impairment. In this study, we describe the distribution of lesions along the corticospinal tracts from the cortex to the cervical spinal cord in patients with various disease phenotypes and disability status. We also assess the link between lesion load and location within corticospinal tracts, and disability at baseline and 2-year follow-up. We retrospectively included 290 patients (22 clinically isolated syndrome, 198 relapsing remitting, 39 secondary progressive, 31 primary progressive multiple sclerosis) from eight sites. Lesions were segmented on both brain (T2-FLAIR or T2-weighted) and cervical (axial T2- or T2*-weighted) MRI scans. Data were processed using an automated and publicly available pipeline. Brain, brainstem and spinal cord portions of the corticospinal tracts were identified using probabilistic atlases to measure the lesion volume fraction. Lesion frequency maps were produced for each phenotype and disability scores assessed with Expanded Disability Status Scale score and pyramidal functional system score. Results show that lesions were not homogeneously distributed along the corticospinal tracts, with the highest lesion frequency in the corona radiata and between C2 and C4 vertebral levels. The lesion volume fraction in the corticospinal tracts was higher in secondary and primary progressive patients (mean = 3.6 ± 2.7% and 2.9 ± 2.4%), compared to relapsing-remitting patients (1.6 ± 2.1%, both P < 0.0001). Voxel-wise analyses confirmed that lesion frequency was higher in progressive compared to relapsing-remitting patients, with significant bilateral clusters in the spinal cord corticospinal tracts (P < 0.01). The baseline Expanded Disability Status Scale score was associated with lesion volume fraction within the brain (r = 0.31, P < 0.0001), brainstem (r = 0.45, P < 0.0001) and spinal cord (r = 0.57, P < 0.0001) corticospinal tracts. The spinal cord corticospinal tracts lesion volume fraction remained the strongest factor in the multiple linear regression model, independently from cord atrophy. Baseline spinal cord corticospinal tracts lesion volume fraction was also associated with disability progression at 2-year follow-up (P = 0.003). Our results suggest a cumulative effect of lesions within the corticospinal tracts along the brain, brainstem and spinal cord portions to explain physical disability in multiple sclerosis patients, with a predominant impact of intramedullary lesions.


Subject(s)
Brain/pathology , Multiple Sclerosis/pathology , Pyramidal Tracts/pathology , Adult , Cervical Cord/pathology , Disability Evaluation , Disease Progression , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Retrospective Studies
19.
Neuroimage ; 213: 116690, 2020 06.
Article in English | MEDLINE | ID: mdl-32119987

ABSTRACT

BACKGROUND: Previous histopathology and MRI studies have addressed the differences between focal white matter lesions (FWML) and diffusely abnormal white matter (DAWM) in multiple sclerosis (MS). These two categories of white matter T2-weighted (T2w) hyperintensity show different degrees of demyelination, axonal loss and immune cell density on histopathology, potentially offering distinct correlations with symptoms. OBJECTIVES: 1) To automate the separation of FWML and DAWM using T2w MRI intensity thresholds and to investigate their differences in magnetization transfer ratios (MTR), which are sensitive to myelin content; 2) to correlate MTR values in FWML and DAWM with normalized signal intensity values on fluid attenuated inversion recovery (FLAIR), T2w, and T1-weighted (T1w) contrasts, as well as with the ratio of T2w/T1w normalized values, in order to determine whether these normalized intensities can be used when MTR is not available. METHODS: We used three MRI datasets: datasets 1 and 2 had 20 MS participants each, scanned with similar 3T MRI protocols in 2 centers, including: 3D T1w (MP2RAGE), 3D FLAIR, 2D T2w, and 3D magnetization-transfer (MT) contrasts. Dataset 3 consisted of 67 scans of participants enrolled in a multisite study and had T1w and T2w contrasts. We used the first dataset to develop an automated technique to separate FWML from DAWM and the second and third to validate the automation of the technique. We applied the automatic thresholds to all datasets to assess the overlap of the manual and the automated masks using Dice kappa. We also assessed differences in mean MTR values between NAWM, DAWM and FWML, using manually and automatically derived masks in datasets 1 and 2. Finally, we used the mean intensity of manually-traced areas of NAWM on T2w images as the normalization factor for each MRI contrast, and compared these with the normalized-intensity values obtained using automated NAWM (A-NAWM) masks as the normalization factor. ANOVA assessed the MTR differences across tissue types. Paired t-test or Wilcoxon signed-ranked test assessed FWML and DAWM differences between manual and automatically derived volumes. Pearson correlations assessed the relationship between MTR and normalized intensity values in the manual and automatically derived masks. RESULTS: The mean Dice-kappa values for dataset 1 were: 0.79 for DAWM masks and 0.90 for FWML masks. In dataset 2, mean Dice-kappa values were: 0.78 for DAWM and 0.87 for FWML. In dataset 3, mean Dice-kappa values were 0.72 for DAWM, and 0.87 for FWML. Manual and automated DAWM and FWML volumes were not significantly different in all datasets. MTR values were significantly lower in manually and automatically derived FWML compared with DAWM in both datasets (dataset 1 manual: F â€‹= â€‹111,08, p â€‹< â€‹0.0001; automated: F â€‹= â€‹153.90, p â€‹< â€‹0.0001; dataset 2 manual: F â€‹= â€‹31.25, p â€‹< â€‹0.0001; automated: F â€‹= â€‹74.04, p â€‹< â€‹0.0001). In both datasets, manually derived FWML and DAWM MTR values showed significant correlations with normalized T1w (r â€‹= â€‹0.77 to 0.94) intensities. CONCLUSIONS: The separation of FWML and DAWM on MRI scans of MS patients using automated intensity thresholds on T2w images is feasible. MTR values are significantly lower in FWML than DAWM, and DAWM values are significantly lower than NAWM, reflecting potentially greater demyelination within focal lesions. T1w normalized intensity values exhibit a significant correlation with MTR values in both tissues of interest and could be used as a proxy to assess demyelination when MTR or other myelin-sensitive images are not available.


Subject(s)
Brain/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , White Matter/diagnostic imaging , Adult , Automation , Brain/pathology , Female , Humans , Male , Middle Aged , Multiple Sclerosis/pathology , White Matter/pathology
20.
Neuroimage ; 214: 116737, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32171923

ABSTRACT

BACKGROUND: Brain volume loss measured from magnetic resonance imaging (MRI) is a marker of neurodegeneration and predictor of disability progression in MS, and is commonly used to assess drug efficacy at the group level in clinical trials. Whether measures of brain volume loss could be useful to help guide management of individual patients depends on the relative magnitude of the changes over a given interval to physiological and technical sources of variability. GOAL: To understand the relative contributions of neurodegeneration vs. physiological and technical sources of variability to measurements of brain volume loss in individuals. MATERIAL AND METHODS: Multiple T1-weighted 3D MPRAGE images were acquired from a healthy volunteer and MS patient over varying time intervals: 7 times on the first day (before breakfast at 7:30AM and then every 2 â€‹h for 12 â€‹h), each day for the next 6 working days, and 6 times over the remainder of the year, on 2 â€‹Siemens MRI scanners: 1.5T Sonata (S1) and 3.0T TIM Trio (S2). Scan-reposition-rescan data were acquired on S2 for daily, monthly and 1-year visits. Percent brain volume change (PBVC) was measured from baseline to each follow-up scan using FSL/SIENA. We estimated the effect of physiologic fluctuations on brain volume using linear regression of the PBVC values over hourly and daily intervals. The magnitude of the physiological effect was estimated by comparing the root-mean-square error (RMSE) of the regression of all the data points relative to the regression line, for the hourly scans vs the daily scans. Variance due to technical sources was assessed as the RMSE of the regression over time using the intracranial volume as a reference. RESULTS: The RMSE of PBVC over 12 â€‹h, for both scanners combined, ("Hours", 0.15%), was similar to the day-to-day variation over 1 week ("Days", 0.14%), and both were smaller than the RMS error over the year (0.21%). All of these variations, however, were smaller than the scan-reposition-rescan RMSE (0.32%). The variability of PBVC for the individual scanners followed the same trend. The standard error of the mean (SEM) for PBVC was 0.26 for S1, and 0.22 for S2. From these values, we computed the minimum detectable change (MDC) to be 0.7% on S1 and 0.6% on S2. The location of the brain along the z-axis of the magnet inversely correlated with brain volume change for hourly and daily brain volume fluctuations (p â€‹< â€‹0.01). CONCLUSION: Consistent diurnal brain volume fluctuations attributable to physiological shifts were not detectable in this small study. Technical sources of variation dominate measured changes in brain volume in individuals until the volume loss exceeds around 0.6-0.7%. Reliable interpretation of measured brain volume changes as pathological (greater than normal aging) in individuals over 1 year requires changes in excess of about 1.1% (depending on the scanner). Reliable brain atrophy detection in an individual may be feasible if the rate of brain volume loss is large, or if the measurement interval is sufficiently long.


Subject(s)
Brain/pathology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Multiple Sclerosis/pathology , Neuroimaging/methods , Adult , Atrophy/diagnostic imaging , Atrophy/pathology , Brain/diagnostic imaging , Healthy Volunteers , Humans , Male , Multiple Sclerosis/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL