Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Mar Pollut Bull ; 203: 116398, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38723548

ABSTRACT

Anthropogenic pollution poses a threat to marine conservation by causing chronic toxic effects. Seabirds have contact throughout their lives with pollutants like plastic, metals, polychlorinated biphenyls (PCBs), and organochlorine pesticides such as hexachlorocyclohexanes (HCHs). We assessed 155 Manx shearwaters (Puffinus puffinus) stranded along the Brazilian coast, analyzing associations between organic pollutants, plastic ingestion, biomarkers (transcript levels of aryl hydrocarbon receptor, cytochrome P450-1A-5 [CYP1A5], UDP-glucuronosyl-transferase [UGT1], estrogen receptor alpha-1 [ESR1], and heat shock protein-70 genes) and enzymes activity (ethoxy-resorufin O-deethylase and glutathione S-transferase [GST]). Plastic debris was found in 29 % of the birds. The transcription of UGT1 and CYP1A5 was significantly associated with hexachlorobenzene (HCB) and PCBs levels. ESR1 was associated with HCB and Mirex, and GST was associated with Drins and Mirex. While organic pollutants affected shearwaters more than plastic ingestion, reducing plastic availability remains relevant as xenobiotics are also potentially adsorbed onto plastics.

2.
Chemosphere ; 355: 141807, 2024 May.
Article in English | MEDLINE | ID: mdl-38552803

ABSTRACT

The present study investigates the potential for biosurfactant production of 19 marine yeast species obtained from zoanthids. Using the emulsification index test to screen the samples produced by the marine yeasts, we verified that five isolates exhibited an emulsification index ≥50%. Additional tests were performed on such isolates, including oil displacement, drop collapse, Parafilm M assay, and surface tension measurement. The tolerance of produced biosurfactants for environmental conditions was also analyzed, especially considering the media's temperature, pH, and salinity. Moreover, the surfactant's ability to emulsify different hydrocarbon sources and to metabolize kerosene as the sole carbon source was evaluated in vitro. Our results demonstrate that yeast biosurfactants can emulsify hydrocarbon sources under different physicochemical conditions and metabolize kerosene as a carbon source. Considering the Yarrowia lipolytica LMS 24B as the yeast model for biosurfactant production from the cell's wall biomass, emulsification indexes of 61.2% were obtained, even at a high temperature of 120 °C. Furthermore, the Fourier-transform middle infrared spectroscopy (FTIR) analysis of the biosurfactant's chemical composition revealed the presence of distinct functional groups assigned to a glycoprotein complex. Considering the status of developing new bioproducts and bioprocesses nowadays, our findings bring a new perspective to biosurfactant production by marine yeasts, especially Y. lipolytica LMS 24B. In particular, the presented results validate the relevance of marine environments as valuable sources of genetic resources, i.e., yeast strains capable of metabolizing and emulsifying petroleum derivatives.


Subject(s)
Petroleum , Yarrowia , Yarrowia/metabolism , Surface-Active Agents/chemistry , Kerosene , Petroleum/analysis , Hydrocarbons/metabolism , Carbon/metabolism , Biodegradation, Environmental
3.
Food Chem ; 427: 136702, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37393636

ABSTRACT

The identification of biogenic amines and some precursor amino acids and the adulteration through stable isotopes was carried out in 114 honey from different geographic regions in Brazil (states of São Paulo (SP) and Santa Catarina (SC)) as support for evaluating quality control and food safety. Serotonin was detected in all samples, while melatonin was quantified in 92.2% of honey from SP and in 94% of SC. l-Dopa, dopamine and histamine appeared at higher levels in honey from SP. Cadaverine, putrescine, spermidine and spermine, varied little according to botanical source. Three honey from the metropolitan region of SP were considered adulterated (C4SUGARS > 7%), 92 were authentic samples (C4SUGARS - 7 to 7%) and 19 unadulterated (C4SUGARS less than - 7%), with isotopic values of δ13CH and δ13CP > 7%. The data were important for differentiating quality as a function of biogenic amines and stable isotope technique was important in detecting honey adulteration.


Subject(s)
Honey , Brazil , Biogenic Amines , Carbon Isotopes/analysis , Sugars
4.
J Zoo Wildl Med ; 53(4): 733-743, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36640075

ABSTRACT

Plastic ingestion is a problem for seabirds worldwide. In addition to direct health effects such as obstruction or perforation of the gastrointestinal tract, plastic ingestion can also lead to indirect health effects through the release of chemicals that may be absorbed and cause systemic and chronic toxicity. Among chemicals that can be released by plastics are phthalate esters, a group of chemicals widely used as plasticizers or additives to change the physical characteristics of plastics. In this study, three phthalate esters, dimethyl phthalate (DMP), dibuthyl phthalate (DBP), and diethylhexyl phthalate (DEHP), were quantified in the uropygial gland of 48 seabirds from 16 species collected ashore in a tropical region, the coast of Espírito Santo, Eastern Brazil. Including trace levels, DMP was detected in 16 birds (33%) from 10 species, with an average concentration of 0.014 ± 0.005 ng/µl (mean ± SD for individuals with concentrations above the practical level of detection of 0.01 ng/µl). DBP was detected in 15 birds (31%) from 11 species, with an average concentration of 0.049 ± 0.032 ng/µl. DEHP was detected in 21 birds (44%) from 11 species, with an average concentration of 0.115 ± 0.105 ng/µl. DMP concentration in the uropygial gland was positively associated with the presence, number, and mass of plastic items in the upper digestive tract. However, no such relationship was noted for DBP nor DEHP, suggesting the concentration of phthalate compounds in the uropygial gland might not always serve as a reliable proxy for plastic ingestion. In spite of relatively high frequencies of detection, the low concentrations of phthalates detected in this study suggest levels of exposure below known toxicity thresholds. Further studies on the potential adverse effects of phthalate exposure in seabirds are necessary, especially on the reproductive development of embryos and chicks.


Subject(s)
Diethylhexyl Phthalate , Plastics , Animals , Plasticizers , Esters , Brazil , Chickens , Eating
5.
Food Sci Technol Int ; 29(1): 3-12, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34726544

ABSTRACT

In this work photocatalytic ethylene degradation (TiO2-UV) was applied in green cherry tomatoes with the aim to control biochemical and physiological changes during ripening. Photocatalytic process was performed at 18 °C ± 2 °C and 85% HR for 10 days using continuous air flux. Ethylene, O2 and CO2 concentration from cherry tomatoes under TiO2-UV and control (c) fruits, were measured by GC-MS for 10 days. After that, the tomatoes were stored for 20 days. During the photocatalysis process, ethylene was completely degraded and control fruits, the ethylene was 28.73 nL/g. Respiration rate was lower for fruits under TiO2-UV than control. During storage period, cherry tomatoes treated by TiO2-UV, showed lower ethylene concentration, respiration rate, total soluble solid, lycopene, sugar and organic acid content than control showing that the fruits treated with photocatalysis did not reach the full maturity. In addition, all the cherry tomatoes showed different maturity stages. Fungal incidence was higher in control fruits than fruits treated with photocatalysis. This research showed for the first time that photocatalytic technology preserved the physiological quality of cherry tomatoes for 30 days of storage, being a promised technology to preserve cherries tomatoes.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/chemistry , Titanium/analysis , Ethylenes , Fruit/chemistry
6.
Environ Technol ; 44(7): 974-987, 2023 Mar.
Article in English | MEDLINE | ID: mdl-34605747

ABSTRACT

In order to add value to the beach-cast Sargassum cymosum algae, its biomass was converted by pyrolysis process at 800°C into biochar, characterized and applied in the adsorption of Acetaminophen in batch and fixed-bed processes. Characterization by pH, Point of Zero Charge (pHPZC), Fourier-Transform Infrared Spectroscopy (FTIR), Thermogravimetric (TG), Scanning Electron Microscopy (SEM) and Surface area (BET) showed that the biochar presents properties favourable for the Acetaminophen adsorption. High surface area was obtained of 368.1 m². g-1, presenting the formation of pores, observed by SEM. The biochar showed basic characteristics (pH = 8.84 and pHPZC = 9.9), inferring an adsorption involving several different mechanisms such as dispersive interactions by π electrons, electrostatic attractions, and hydrophobic interactions. The adsorption mechanism is limited by chemisorption and governed by the formation of monolayer on the biochar surface, the Pseudo-second order kinetic and Langmuir-Freundlich isotherm model described the best behaviour of batch adsorption, with equilibrium and maximum adsorption capacity qe = 6.93 ± 0.07 mg. g-1 and qms = 12.34 ± 0.45 mg. g-1, respectively. Fixed-bed adsorption were performed varying adsorbent mass (0.3 and 0.6 g) and flow rate (2.5 and 5.0 mL. min-1), the best qy = 42.33 mg. g-1 found to adsorbent mass of 0.6 g and flow rate of 2.5 mL. min-1. Yan model described the best behaviour of the breakthrough curves data. Thus, the results provide insights into the development of adsorbents from beach-cast of Sargassum cymosum to adsorption of Acetaminophen, enhancing the use of environmental waste to obtain it.


Subject(s)
Sargassum , Water Pollutants, Chemical , Acetaminophen , Adsorption , Water Pollutants, Chemical/chemistry , Charcoal/chemistry , Kinetics , Spectroscopy, Fourier Transform Infrared , Hydrogen-Ion Concentration
7.
Phytother Res ; 37(2): 527-548, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36180970

ABSTRACT

It has been estimated that more than 70% of all drugs approved worldwide between 1981 and 2006 for human health are derived from or structurally similar to natural compounds. The identification of biological matrices containing bioactive compounds with therapeutic and nutraceutical potential is necessary to supply the global market demands. Researches have indicated that the consumption of dry and aqueous extracts of Ilex paraguariensis A. St.-Hil. is safe, providing that plant biomass does not be exposed to smoke over the drying process, avoiding contamination (e.g., ) with polycyclic aromatic hydrocarbon compounds, and can might help avoiding many diseases, with important potential applications in the pharma and nutraceutical industries. A survey was carried out covering the main therapeutic and nutraceutical studies performed on I. paraguariensis extracts and their relationship with the global patents granted in the last 20 years for the products using this specie in their composition. In the PubMed database, by searching for the term "Ilex paraguariensis," an output with 497 scientific publications was found. Each paper was analyzed individually and 26 publications encompassing exclusively therapeutical and nutraceutical approaches of that plant species were selected. For the patent screening regarding Ilex-derived products, the survey considered three patent databases: European Patent Office (EPO) (Espacenet), World Intellectual Property Organization, WIPO), and National Institute of Industrial Property (NIIP-Brazil). The criterion chosen to select the patents in the databases was the inclusion of the terms "Ilex paraguariensis" and "yerba mate" in the title and/or in the abstract, considering the patents issued from 2000 to 2020. Additionally, only patents with therapeutic and nutraceutical potential were considered on the survey. The screening and selection of the documents were performed independently by two researchers and the information cross-checked at the end. This review contributes to show the state of the art over the last 20 years on the knowledge about the therapeutical and nutraceutical usages of the yerba mate, associated to a certain number of issued patents. The patent survey afforded 62 relevant documents covering products based on Ilex paraguariensis biomass. Considering the number of patents issued, most of them are related to the pharmaceutical area (30), followed by food supplements and beverages (17), cosmetics (10) and, finally, nutraceuticals (5). A detailed analysis of the patents issued showed that most are related to pharmaceutical grade products, generally, marketed as oral and injectable compositions for treatments of obesity, insulin resistance, hyperlipemia and diabetes mellitus, arteriosclerosis, neurological diseases, and SARS-Cov-2, for example. In this work, a curious fact is that there are few patents for food, cosmetics, and nutraceuticals products containing yerba mate. Therefore, it seems to be relevant to take into account the potential of that species as source of bioactive compounds for the development of new products not only intended to the pharma sector. In this sense, 26 reports were identified showing possibilities and trendiness in developing new yerba mate based products, such as packaging, biopesticides, antiseptics, and food supply, expanding the possibilities of technological applications of this plant species.


Subject(s)
COVID-19 , Ilex paraguariensis , Humans , Plant Extracts/therapeutic use , SARS-CoV-2 , Dietary Supplements
8.
Food Res Int ; 162(Pt A): 111913, 2022 12.
Article in English | MEDLINE | ID: mdl-36461271

ABSTRACT

Honey is considered a complex matrix for presenting a range of secondary metabolites originating from the regional flora. It has been highlighted as a functional food consumed worldwide and frequently suffering from adulteration. Fraud methods have been sophisticated over the years, indicating the need of a continuous updating of the existing analysis methods. For this reason, analytical techniques applied to honey have been expanded, allowing the detection of fraud and the determination of geographic and botanical origin, to guarantee the authenticity of the product. In this sense, this study aimed to characterize floral honey samples in 2019-2020 and 2020-2021 harvests in the states of Santa Catarina (SC, southern Brazil - n = 73) and São Paulo (SP, southeastern Brazil - n = 59), through UV-vis, NIR, and NMR spectroscopies. The total reduced capacity showed a wide variation (0.76-12.8 mg GAE.g-1) among the SC and SP samples. Spectroscopic analyses through UV-vis and NMR with the application of PCA proved effective for discriminating honey samples according to their geographical origin. The honey UV-vis spectral profiles allowed to detect wavelengths that can be associated with honey adulteration, however further studies are needed to establish the accuracy of detection regarding fraud. In summary, a set of analytical protocols is presented to determine the geographical origin of floral honey, even when originated from regions with great biodiversity such as Brazil.


Subject(s)
Honey , Brazil , Fraud , Geography , Magnetic Resonance Spectroscopy
9.
Article in English | MEDLINE | ID: mdl-36497896

ABSTRACT

Certain members of the Coronaviridae family have emerged as zoonotic agents and have recently caused severe respiratory diseases in humans and animals, such as SARS, MERS, and, more recently, COVID-19. Antivirals (drugs and antiseptics) capable of controlling viruses at the site of infection are scarce. Microalgae from the Chlorellaceae family are sources of bioactive compounds with antioxidant, antiviral, and antitumor activity. In the present study, we aimed to evaluate various extracts from Planktochlorella nurekis in vitro against murine coronavirus-3 (MHV-3), which is an essential human coronavirus surrogate for laboratory assays. Methanol, hexane, and dichloromethane extracts of P. nurekis were tested in cells infected with MHV-3, and characterized by UV-vis spectrophotometry, nuclear magnetic resonance (NMR) spectroscopy, ultraperformance liquid chromatography-mass spectrometry (UPLC-MS), and the application of chemometrics through principal component analysis (PCA). All the extracts were highly efficient against MHV-3 (more than a 6 Log unit reduction), regardless of the solvent used or the concentration of the extract, but the dichloromethane extract was the most effective. Chemical characterization by spectrophotometry and NMR, with the aid of statistical analysis, showed that polyphenols, carbohydrates, and isoprene derivatives, such as terpenes and carotenoids have a more significant impact on the virucidal potential. Compounds identified by UPLC-MS were mainly lipids and only found in the dichloromethane extract. These results open new biotechnological possibilities to explore the biomass of P. nurekis; it is a natural extract and shows low cytotoxicity and an excellent antiviral effect, with low production costs, highlighting a promising potential for development and implementation of therapies against coronaviruses, such as SARS-CoV-2.


Subject(s)
COVID-19 , Murine hepatitis virus , Animals , Mice , Humans , SARS-CoV-2 , Chromatography, Liquid , Tandem Mass Spectrometry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
10.
Int J Tryptophan Res ; 15: 11786469221102098, 2022.
Article in English | MEDLINE | ID: mdl-35656455

ABSTRACT

Honey is a natural product with beneficial properties to health and has different characteristics depending on the region of production and collection, flowering, and climate. The presence of precursor amino acids of- and biogenic amines can be important in metabolomic studies of differentiation and quality of honey. We analyzed 65 honeys from 11 distinct regions of the State of Santa Catarina (Brazil) as to the profile of amino acids and biogenic amines by HPLC. The highest L-tryptophan (Trp), 5-hydroxytryptophan (5-OH-Trp), and tryptamine (Tryp) levels were detected in Cfb climate and harvested in 2019. Although we have found high content of serotonin, dopamine, and L-dopa in Cfb climate, the highest values occurred in honey produced during the summer 2018 and at altitudes above 900 m. Results indicate that the amino acids and biogenic amine levels in honeys are good indicators of origin. These data warrant further investigation on the honey as source of amino acids precursor of serotonin, melatonin, and dopamine, what can guide the choice of food as source of neurotransmitters.

11.
Food Chem X ; 13: 100237, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35498978

ABSTRACT

This study aimed to use the non-conventional microwave-assisted extraction (MAE) and pressurized liquid extraction (PLE) techniques for recovering bioactive compounds from tomato pomace, a valuable agro-industrial waste. The raw material was previously dried using a spouted bed dryer and then submitted to extraction with green solvents. A response surface methodology (RSM) performed the optimization of MAE and PLE. Next, the yield and the antioxidant activity results were maximized, and the lycopene content of the optimum MAE and PLE extracts was assessed by high-performance liquid chromatography (HPLC). Additionally, a fraction of raw material was oven dried as a comparison. The PLE extract exhibited the highest antioxidant activity, whereas the MAE extract showed the highest lycopene content (59.66 µg lycopene/g extract), which represents a 66.93% lycopene recovery compared to a standard technique with acetone. The remarkable results show that the non-conventional drying and extraction techniques were effective in valorizing this neglected material.

12.
Front Nutr ; 9: 868492, 2022.
Article in English | MEDLINE | ID: mdl-35464011

ABSTRACT

Tomatoes and their by-products are indisputable sources of substances with antioxidants properties. Several factors limit the production and influence the nutritional and antioxidant quality of tomato fruit. However, consumers can benefit from the effects of environmental factors, such as water and hydric stress, UV radiation, agronomic practices, among others, which lead to changes in the content of secondary metabolites in tomatoes. Molecules as phenolic compounds, carotenoids, and biogenic amines are often formed in response to environmental adversities. In this way, the consumption of tomato fruits or their by-products with higher levels of antioxidants may be important adjuvants in the prevention or reduction of diseases. In this mini-review, we will present how pre- and postharvest conditions may influence the content of some bioactive compounds in tomatoes. Furthermore, we will present how some heat processing methods may change the antioxidant content, as well as, the functional and nutritional properties of the final product.

13.
J Integr Bioinform ; 18(3)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34085494

ABSTRACT

Some species of cover crops produce phenolic compounds with allelopathic potential. The use of math, statistical and computational tools to analyze data obtained with spectrophotometry can assist in the chemical profile discrimination to choose which species and cultivation are the best for weed management purposes. The aim of this study was to perform exploratory and discriminant analysis using R package specmine on the phenolic profile of Secale cereale L., Avena strigosa L. and Raphanus sativus L. shoots obtained by UV-vis scanning spectrophotometry. Plants were collected at 60, 80 and 100 days after sowing and at 15 and 30 days after rolling in experiment in Brazil. Exploratory and discriminant analysis, namely principal component analysis, hierarchical clustering analysis, t-test, fold-change, analysis of variance and supervised machine learning analysis were performed. Results showed a stronger tendency to cluster phenolic profiles according to plant species rather than crop management system, period of sampling or plant phenologic stage. PCA analysis showed a strong distinction of S. cereale L. and A. strigosa L. 30 days after rolling. Due to the fast analysis and friendly use, the R package specmine can be recommended as a supporting tool to exploratory and discriminatory analysis of multivariate data.


Subject(s)
Crops, Agricultural , Secale , Cluster Analysis , Discriminant Analysis , Spectrophotometry, Ultraviolet
14.
Mater Sci Eng C Mater Biol Appl ; 121: 111824, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33579467

ABSTRACT

The sesquiterpene ß-caryophyllene (BCP) is a structurally singular cannabinoid and a selective agonist of the CB2 receptor, which in addition to being expressed in the CNS, is intrinsically expressed within the immune system and lacks psychoactivity. Nanoencapsulation of BCP can allow its controlled release into the CNS and intranasal administration. Thus, a protocol for nanoencapsulation of BCP was developed and optimized in order to adjust the desired bioactive content and physicochemical parameters. The formulation was assessed regarding nanoparticle size, zeta potential, morphology, pH, osmolarity, stability, and drug release kinetics in vitro. The final composition of the BCP nanoparticles presented in its organic phase (OP) Tween 20 (0.25%), BCP (0.1%), and PEG 400 (5%); and in its aqueous phase (AP) ultrapure water and poloxamer P188 (0.25%). The formulation showed to be suitable for intranasal administration, presenting pH 6.5 and osmolarity of 150 mmol/kg. The mean particle diameter was 147.2 nm, PDI 0.052, and zeta potential of -24.5. The accelerated stability test showed that nanoparticles were stable for up to 1 month, when reversible creaming effect occurred. Besides, it was noted a low rate of particle accumulation and particle size distribution remained unchanged. BCP nanoparticles were shown to be promptly released in physiological medium (up to 60 min). In this work, a formulation containing ß-caryophyllene nanoparticles suitable for physiological administration and preclinical tests was successfully developed.


Subject(s)
Cannabinoids , Nanoparticles , Pharmaceutical Preparations , Cannabinoid Receptor Agonists , Polycyclic Sesquiterpenes
15.
Metabolomics ; 17(2): 21, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33523311

ABSTRACT

INTRODUCTION: Methods for the automated and accurate identification of metabolites in 1D 1H-NMR samples are crucial, but this is still an unsolved problem. Most available tools are mainly focused on metabolite quantification, thus limiting the number of metabolites that can be identified. Also, most only use reference spectra obtained under the same specific conditions of the target sample, limiting the use of available knowledge. OBJECTIVES: The main goal of this work was to develop novel methods to perform metabolite annotation from 1D 1H-NMR peaks with enhanced reliability, to aid the users in metabolite identification. An essential step was to construct a vast and up-do-date library of reference 1D 1H-NMR peak lists collected under distinct experimental conditions. METHODS: Three different algorithms were evaluated for their capacity to correctly annotate metabolites present in both synthetic and real samples and compared to publicly available tools. The best proposed method was evaluated in a plethora of scenarios, including missing references, missing peaks and peak shifts, to assess its annotation accuracy, precision and recall. RESULTS: We gathered 1816 peak lists for 1387 different metabolites from several sources across different conditions for our reference library. A new method, NMRFinder, is proposed and allows matching 1D 1H-NMR samples with all the reference peak lists in the library, regardless of acquisition conditions. Metabolites are scored according to the number of peaks matching the samples, how unique their peaks are in the library and how close the spectrum acquisition conditions are in relation to those of the samples. Results show a true positive rate of 0.984 when analysing computationally created samples, while 71.8% of the metabolites were annotated when analysing samples from previously identified public datasets. CONCLUSION: NMRFinder performs metabolite annotation reliably and outperforms previous methods, being of great value in helping the user to ultimately identify metabolites. It is implemented in the R package specmine.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Metabolomics/methods , Proton Magnetic Resonance Spectroscopy/methods , Algorithms , Humans , Magnetic Resonance Imaging , Reproducibility of Results , Software
16.
Biosci. j. (Online) ; 37: e37053, Jan.-Dec. 2021. tab
Article in English | LILACS | ID: biblio-1359780

ABSTRACT

Campomanesia xanthocarpa var. littoralis, Campomanesia xanthocarpa (Berg), and Campomanesia eugenioides are native fruit plants found in Brazil. Due to the scarce number of controlled scientific studies comparing different native Campomanesia species, this study sought to determine their bioactive compounds and antioxidant properties. C. eugenioides proved to be a rich source of total phenolic compounds, also showing the best antioxidant capacity by the ABTS, DPPH and molybdenum reduction power methods. On the other hand, C. xanthocarpa var. littoralis showed the best results for total flavonoids content, and Iron(II) chelation power. The phenolic compounds contents present in C. eugenioides could be responsible for the best antioxidant activity. This study provides key scientific data regarding the use of valuable fruits from different edible Campomanesia species to produce bioactive ingredients, as well as natural preservatives for food products. Thus, our results contribute to the discovery of the potential application of these native Campomanesia Brazilian fruits, as a natural product with functional and antioxidant properties.


Subject(s)
Myrtaceae , Phytochemicals , Antioxidants
17.
Crit Rev Food Sci Nutr ; 61(4): 649-665, 2021.
Article in English | MEDLINE | ID: mdl-32212928

ABSTRACT

Capsaicinoids are acid amides of C9-C11 branched-chain fatty acids and vanillylamine and constitute important chemical compounds of Capsicum annuum together with their non-pungent analogs (capsinoids) which have an impressive list of health benefit properties (i.e., analgesia, anti-obesity, thermogenic, cardiovascular, gastrointestinal, antioxidant, anti-bacterial, anti-virulence, anti-inflamatory, anti-diabetic, inhibits angiogenesis, and improves glucose metabolism) . In this review, the state of art on how capsaicinoids are affected by different pre- and postharvest factors is discussed together with their biological activity. For instance, high light intensity and heat treatments may reduce capsaicinoid content in fruits probably due to the loss of activity of capsaicin synthase (CS) and phenylalanine ammonia lyase (PAL). The pungency in peppers varies also with environment, genotype or cultivar, node position, fruiting and maturity stages, nitrogen and potassium contents. As the fruit mature, capsaicinoid levels increase. Fruits from the second node tend to have higher accumulation of pungency than those of other positions and the pungency decreases linearly as the node position increase. Sodium hydroxide treatment reduces the pungency of pepper fruit as it hydrolyzes and modifies one of the features (vanillyl group, the acid-amide linkage and alkyl side chain) of capsaicin molecule. Salt and water stress increase PAL and capsaicin synthase activity and increase the capsaicinoid accumulation in fruit, by negatively regulating peroxidase activity at appropriate levels. Future research must be directed in better understanding the changes of capsinoids during pre and post-harvest management, the causal drivers of the loss of activity of the aminotransferase gene (pAMT) and if possible, studies with genetically modified sweet peppers with functional pAMT. Available data provided in this review can be used in different agricultural programs related to developing new cultivars with specific pungency levels. The contents of capsaicinoids and capsinoids in both fresh fruits and marketed products are also of remarkable importance considering the preferences of certain niches in market where higher added-value products might be commercialized.


Subject(s)
Capsicum , Capsaicin/analysis , Capsaicin/pharmacology , Catechols , Fruit/chemistry , Transaminases
18.
Colloids Surf B Biointerfaces ; 198: 111390, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33208279

ABSTRACT

Cutaneous leishmaniasis is a worldwide public health problem. Conventional therapies, in addition to the high cost, have many adverse effects and cases of parasite's resistance. Chalcones are secondary metabolites precursors in the flavonoid pathway and can be obtained naturally, but with low yield from plant raw material. Thus, the use of synthetic chalcones has been a promising strategy for the development of molecules with leishmanicidal activity. Thus, this work aimed to develop a controlled release system of two synthetic chalcone (trans-chalcones and 3'-(trifluormethyl)-chalcone) using polyvinyl alcohol nanofibers (PVA) as scaffold. The association of chalcones to the nanofibers was made by nanoemulsions (NE) thereof, i.e., a colloidal system on a nanometric scale, which allows compounds with opposite polarities to remain miscible and stable throughout their manipulation. Chalcone nanoemulsions were developed using the spontaneous emulsification technique. The NE were characterized regarding their particle size, polydispersion index (PDI), and zeta potential. The results showed NE with spherical shape, absolute values of zeta potential were higher than 30 mV and homogeneous distribution pattern (PDI < 0.3). Dynamics light scattering (DLS) analysis showed similar hydrodynamic rays, i.e., 180 nm (trans-chalcone NE) and 178 nm (NE containing 3'-(trifluormethyl)-chalcone, in addition to presenting encapsulation efficiency values close to 100 %. Subsequently, the NE were added to a polymeric solution of polyvinyl alcohol (PVA) and processed via the electrospinning technique affording a PVA matrix (15 %, w/v) nanofiber containing the chalcones NE at 1 mg.mL-1. In a follow-up experiment, the skin permeation assay of the PVA matrix-chalcone NE was performed in vitro using Franz type diffusion cells and porcine ear as biological model of study. The results showed that the treatments with the nanofibers containing the chalcone NE were retained mainly in the stratum corneum, while the NE suspensions containing chalcone were retained in the epidermis and dermis. This result is thought to be relevant, since parasites are located mainly in the dermis. Further, in vitro assay against the amastigote form of L. (L) amazonensis, showed IC50 values to trans-chalcone and 3'-(trifluormethyl)-chalcone of 24.42 ± 6.76 µg.mL-1 and 15.36 ± 4.61 µg.mL-1, respectively. In addition to improving the solubility of the compounds tested in culture medium without using organic solvents, chalcones in nano-emulsified form reduced the IC50 to 9.09 ± 1.24 µg.mL-1 (trans-chalcone) and 10.27 ± 2.27 µg.mL-1 (3'-(trifluormethyl)-chalcone) which confirmed the potential of the nanoemulsion containing chalcone for cutaneous leishmaniasis treatment.


Subject(s)
Chalcone , Chalcones , Leishmania , Leishmaniasis, Cutaneous , Animals , Polyvinyl Alcohol , Swine
19.
Anticancer Res ; 40(12): 6799-6815, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33288573

ABSTRACT

BACKGROUND/AIM: Glioblastomas (GBMs) are the most malignant primary brain tumor. New treatment strategies against the disease are urgently needed, as therapies are not completely efficient. In this study, we evaluated the antitumorigenic activity of the carotenoid fucoxanthin (Fx) on human GBM cells in vitro. MATERIALS AND METHODS: GBM1 cell viability and proliferation was assessed by MTT reduction, Ki67 and single cell cloning assays. GBM1 migration and invasion were analyzed by wound healing and Transwell assays. Apoptosis and necrosis were analyzed by flow cytometry, and the mitochondrial membrane potential (ΔΨm) by the selective fluorescent dye tetramethylrhodamine ethyl ester. Cell morphology was analyzed through scanning electron microscopy and transmission electron microscopy. Fx anti-angiogenic effect was assessed by the CAM ex ovo assay. RESULTS: Fx decreased cell viability in a concentration-dependent manner (40-100 µ M) in GBM1, A172 and C6 cell lines and was not cytotoxic to murine astrocytes. In addition, Fx inhibited the proliferation and clonogenic potential, and decreased migration and invasion of GBM1 cells. Furthermore, Fx induced apoptosis, loss of ΔΨm and ultrastructural alterations in GBM1. Fx-treated GBM1 cells-conditioned medium reduced the quail yolk membrane vascularity. CONCLUSION: Fx induces cytotoxicity, anti-proliferative, anti-invasive and anti-angiogenic effects on GBM1 cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Xanthophylls/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Culture Media, Conditioned/pharmacology , Dose-Response Relationship, Drug , Glioblastoma , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure
20.
An Acad Bras Cienc ; 92(4): e20200134, 2020.
Article in English | MEDLINE | ID: mdl-33237141

ABSTRACT

Pectin (PC) extracted from a solid residue from cassava roots (Manihot esculenta Crantz) was used to coat nanoparticles (NP) containing ß-carotene (BC) aiming at the gastrointestinal administration of this lipophilic nutraceutical. The NP were prepared by spontaneous emulsification method using food grade components. Pectin-coated NP have been successfully prepared as confirmed by the increased particle size and negative surface charges due to the pectin's anionic nature. NP showed spherical shape and monodisperse distribution, with a mean size of 21.3 nm (polydispersity index (PDI) 0.29) for BC PC T80-NP (nanoparticle with ß-carotene, pectin and Tween 80) and 261.4 nm (PDI 0.1) for BC PC T20-NP (nanoparticle with ß-carotene, pectin and Tween 20). BC was encapsulated at amounts of 530 and 324 µg/ml for BC PC T80-NP and BC PC T20-NP, respectively, with high encapsulation efficiency (> 95%), increasing its antioxidant capacity in vitro, besides no cytotoxic effect. However, only BC PC T20-NP was stable over a 90 days storage period (4°C) and revealed a strong interaction between pectin and mucin. These results suggest that pectin-coated BC PC T20-NP is a promising strategy to improve the bioavailability and permeation of BC for administration through mucosal surfaces.


Subject(s)
Manihot , Nanoparticles , Cellulose , Pectins , beta Carotene
SELECTION OF CITATIONS
SEARCH DETAIL
...