Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Stem Cell Res ; 69: 103076, 2023 06.
Article in English | MEDLINE | ID: mdl-36963214

ABSTRACT

Human induced pluripotent stem cell (hiPSC) line INEUi001-A was reprogrammed from peripheral blood mononuclear cells (PBMC) using the lentiviral-hSTEMCCA-loxP vector. PBMCs were obtained from a 75- year-old female ALS/FTD disease patient carrying a heterozygous deletion within the C9ORF72 hexanucleotide repeat region resulting in a GGGGCCG sequence (∼1.16 repeats). C9ORF72 genotype was maintained and stemness and pluripotency confirmed in INEUi001-A hiPSC line.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Induced Pluripotent Stem Cells , Female , Humans , Aged , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Dementia/genetics , Induced Pluripotent Stem Cells/metabolism , C9orf72 Protein/genetics , Leukocytes, Mononuclear/metabolism , Genotype
2.
Sci Rep ; 12(1): 18803, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36335243

ABSTRACT

Human embryonic and induced pluripotent stem cells are self-renewing pluripotent stem cells (hPSCs) that can differentiate into a wide range of specialized cells. Although moderate hypoxia (5% O2) improves hPSC self-renewal, pluripotency, and cell survival, the effect of acute severe hypoxia (1% O2) on hPSC viability is still not fully elucidated. In this sense, we explore the consequences of acute hypoxia on hPSC survival by culturing them under acute (maximum of 24 h) physical severe hypoxia (1% O2). After 24 h of hypoxia, we observed HIF-1α stabilization concomitant with a decrease in cell viability. We also observed an increase in the apoptotic rate (western blot analysis revealed activation of CASPASE-9, CASPASE-3, and PARP cleavage after hypoxia induction). Besides, siRNA-mediated downregulation of HIF-1α and P53 did not significantly alter hPSC apoptosis induced by hypoxia. Finally, the analysis of BCL-2 family protein expression levels disclosed a shift in the balance between pro- and anti-apoptotic proteins (evidenced by an increase in BAX/MCL-1 ratio) caused by hypoxia. We demonstrated that acute physical hypoxia reduced hPSC survival and triggered apoptosis by a HIF-1α and P53 independent mechanism.


Subject(s)
Pluripotent Stem Cells , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Cell Hypoxia , Apoptosis , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Pluripotent Stem Cells/metabolism
4.
Stem Cell Res ; 53: 102325, 2021 05.
Article in English | MEDLINE | ID: mdl-33839546

ABSTRACT

Human induced pluripotent stem cells (hiPSC) line FLENIi001-A was reprogrammed from dermal fibroblasts using the lentiviral-hSTEMCCA-loxP vector. Fibroblasts were obtained from a skin biopsy of a 72-year-old Caucasian male familial Alzheimer's disease patient carrying the T119I mutation in the PSEN1 gene. PSEN1 genotype was maintained and stemness and pluripotency confirmed in the FLENIi001-A hiPSC line.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Aged , Alzheimer Disease/genetics , Cell Differentiation , Fibroblasts , Humans , Male , Presenilin-1/genetics
5.
Sci Rep ; 10(1): 20653, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33244167

ABSTRACT

Human embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are self-renewing human pluripotent stem cells (hPSCs) that can differentiate to a wide range of specialized cells. Notably, hPSCs enhance their undifferentiated state and self-renewal properties in hypoxia (5% O2). Although thoroughly analyzed, hypoxia implication in hPSCs death is not fully determined. In order to evaluate the effect of chemically mimicked hypoxia on hPSCs cell survival, we analyzed changes in cell viability and several aspects of apoptosis triggered by CoCl2 and dimethyloxalylglycine (DMOG). Mitochondrial function assays revealed a decrease in cell viability at 24 h post-treatments. Moreover, we detected chromatin condensation, DNA fragmentation and CASPASE-9 and 3 cleavages. In this context, we observed that P53, BNIP-3, and NOXA protein expression levels were significantly up-regulated at different time points upon chemical hypoxia induction. However, only siRNA-mediated downregulation of NOXA but not HIF-1α, HIF-2α, BNIP-3, and P53 did significantly affect the extent of cell death triggered by CoCl2 and DMOG in hPSCs. In conclusion, chemically mimicked hypoxia induces hPSCs cell death by a NOXA-mediated HIF-1α and HIF-2α independent mechanism.


Subject(s)
Apoptosis/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Hypoxia/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Pluripotent Stem Cells/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Caspase 3/genetics , Caspase 9/genetics , Cell Death/genetics , Cell Survival/genetics , DNA Fragmentation , Down-Regulation/genetics , Humans , Membrane Proteins/genetics , Mitochondria/genetics , Signal Transduction/genetics , Tumor Suppressor Protein p53/genetics , Up-Regulation/genetics
6.
Exp Eye Res ; 190: 107854, 2020 01.
Article in English | MEDLINE | ID: mdl-31669405

ABSTRACT

Death of retinal photoreceptors is the basis of prevalent blinding diseases. Since steroids might have a therapeutic role in retinal degenerations, we compared the protective effects of dexamethasone and progesterone on photoreceptor death induced by mifepristone and light exposure. Therefore, we studied the effective protection doses for each steroid in the two models. In addition, we analyzed changes in the levels of pro- and antiapoptotic molecules, glucocorticoid receptors α and ß (GRα and GRß), and rhodopsin under conditions of successful protection and photoreceptor survival. Mifepristone and light exposure selectively damaged photoreceptors. In light exposed retinas, photoreceptors mainly disappeared in the dorsotemporal region, while mifepristone produced a uniform damage. Dexamethasone and progesterone, at the same dose of 4 mg/kg/day for 2 days, preserved over 88% photoreceptor nuclei in both models. Assessment of cell death regulators showed that, in control retinas, both steroids activated BCL-XL, a prosurvival molecule, and decreased BID, a proapoptotic regulator. After steroid treatment of damaged retinas, BCL-XL, BCL2 and BAX showed characteristic patterns depending on the use of dexamethasone or progesterone on mifepristone or light exposed retinas. By contrast, BID decreased with any injury-steroid combination. Changes in GRα or GRß levels did not correlate with survival but were consistent with a mechanism of ligand induced downregulation of receptor expression. GRß might be upregulated by progesterone. Both dexamethasone and progesterone increased retinal rhodopsin stores, suggesting a link between photoreceptor protection and transduction pathways. Results show that dexamethasone and progesterone induced comparable but not identical protection responses in each model.


Subject(s)
Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Photoreceptor Cells, Vertebrate/drug effects , Progesterone/pharmacology , Radiation Injuries, Experimental/prevention & control , Retinal Degeneration/prevention & control , Animals , Apoptosis/drug effects , BH3 Interacting Domain Death Agonist Protein/metabolism , Blotting, Western , Caspase 3 , Cell Survival/physiology , Hormone Antagonists/toxicity , Immunohistochemistry , Light/adverse effects , Male , Mice, Inbred BALB C , Mifepristone/toxicity , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/radiation effects , Radiation Injuries, Experimental/etiology , Radiation Injuries, Experimental/metabolism , Receptors, Glucocorticoid/metabolism , Retinal Degeneration/etiology , Retinal Degeneration/metabolism , Rhodopsin/metabolism , bcl-X Protein/metabolism
7.
Mol Neurobiol ; 56(11): 7810-7821, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31124078

ABSTRACT

Glioblastoma multiforme is the most aggressive primary brain tumor. Current knowledge suggests that the growth and recurrence of these tumors are due in part to the therapy-resistant glioma stem cell subpopulation, which possesses the ability for self-renewal and proliferation, driving tumor progression. In many cancers, the p16INK4a-CDK4/6-pRb pathway is disrupted in favor of cell cycle progression. In particular, the frequent deregulation of CDK4/6 in cancer positions these kinases as promising targets. Palbociclib, a potent and selective CDK4/6 inhibitor, has been approved by the FDA as a first-line treatment of advanced breast cancer and there is currently interest in evaluating its effect on other cancer types. Palbociclib has been reported to be efficient, not only at halting proliferation, but also at inducing senescence in different tumor types. In this study, we evaluated the effect of this inhibitor on four patient-derived glioma stem cell-enriched cell lines. We found that Palbociclib rapidly and effectively inhibits proliferation without affecting cell viability. We also established that in these cell lines CDK6 is the key interphase CDK for controlling cell cycle progression. Prolonged exposure to Palbociclib induced a senescent-like phenotype characterized by flattened morphology, cell cycle arrest, increased ß-galactosidase activity and induction of other senescent-associated markers. However, we found that after Palbociclib removal cell lines resumed normal proliferation, which implies they conserved their replicative potential. As a whole, our results indicate that in patient-derived glioma stem cell-enriched cell lines, Palbociclib induces a senescent-like quiescence rather than true senescence.


Subject(s)
Brain Neoplasms/pathology , Cellular Senescence/drug effects , Glioma/pathology , Neoplastic Stem Cells/pathology , Piperazines/pharmacology , Pyridines/pharmacology , Apoptosis/drug effects , Brain Neoplasms/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Glioma/metabolism , Humans , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Phenotype , Roscovitine/pharmacology
8.
Redox Biol ; 7: 78-87, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26654980

ABSTRACT

Oxidative stress has a critical role in the pathogenesis of Age-related Macular Degeneration (AMD), a multifactorial disease that includes age, gene variants of complement regulatory proteins and smoking as the main risk factors. Stress-induced premature cellular senescence (SIPS) is postulated to contribute to this condition. In this study, we hypothesized that oxidative damage, promoted by endogenous or exogenous sources, could elicit a senescence response in RPE cells, which would in turn dysregulate the expression of major players in AMD pathogenic mechanisms. We showed that exposure of a human RPE cell line (ARPE-19) to a cigarette smoke concentrate (CSC), not only enhanced Reactive Oxygen Species (ROS) levels, but also induced 8-Hydroxydeoxyguanosine-immunoreactive (8-OHdG) DNA lesions and phosphorylated-Histone 2AX-immunoreactive (p-H2AX) nuclear foci. CSC-nuclear damage was followed by premature senescence as shown by positive senescence associated-ß-galactosidase (SA-ß-Gal) staining, and p16(INK4a) and p21(Waf-Cip1) protein upregulation. N-acetylcysteine (NAC) treatment, a ROS scavenger, decreased senescence markers, thus supporting the role of oxidative damage in CSC-induced senescence activation. ARPE-19 senescent cultures were also established by exposure to hydrogen peroxide (H2O2), which is an endogenous stress source produced in the retina under photo-oxidation conditions. Senescent cells upregulated the proinflammatory cytokines IL-6 and IL-8, the main markers of the senescence-associated secretory phenotype (SASP). Most important, we show for the first time that senescent ARPE-19 cells upregulated vascular endothelial growth factor (VEGF) and simultaneously downregulated complement factor H (CFH) expression. Since both phenomena are involved in AMD pathogenesis, our results support the hypothesis that SIPS could be a principal player in the induction and progression of AMD. Moreover, they would also explain the striking association of this disease with cigarette smoking.


Subject(s)
Hydrogen Peroxide/adverse effects , Retinal Pigment Epithelium/cytology , Smoke/adverse effects , Vascular Endothelial Growth Factor A/metabolism , Cell Line , Cell Survival/drug effects , Cellular Senescence/drug effects , Complement Factor H/genetics , Complement Factor H/metabolism , Gene Expression Regulation , Humans , Interleukins/metabolism , Macular Degeneration/etiology , Macular Degeneration/immunology , Macular Degeneration/metabolism , Macular Degeneration/pathology , Oxidative Stress , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Nicotiana/chemistry , Vascular Endothelial Growth Factor A/genetics
9.
Biochim Biophys Acta ; 1843(7): 1309-24, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24703879

ABSTRACT

DNA damage, which perturbs genomic stability, has been linked to cognitive decline in the aging human brain, and mutations in DNA repair genes have neurological implications. Several studies have suggested that DNA damage is also increased in brain disorders such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. However, the precise mechanisms connecting DNA damage with neurodegeneration remain poorly understood. CDK5, a critical enzyme in the development of the central nervous system, phosphorylates a number of synaptic proteins and regulates dendritic spine morphogenesis, synaptic plasticity and learning. In addition to these physiological roles, CDK5 has been involved in the neuronal death initiated by DNA damage. We hypothesized that p19INK4d, a member of the cell cycle inhibitor family INK4, is involved in a neuroprotective mechanism activated in response to DNA damage. We found that in response to genotoxic injury or increased levels of intracellular calcium, p19INK4d is transcriptionally induced and phosphorylated by CDK5 which provides it with greater stability in postmitotic neurons. p19INK4d expression improves DNA repair, decreases apoptosis and increases neuronal survival under conditions of genotoxic stress. Our in vivo experiments showed that decreased levels of p19INK4d rendered hippocampal neurons more sensitive to genotoxic insult resulting in the loss of cognitive abilities that rely on the integrity of this brain structure. We propose a feedback mechanism by which the neurotoxic effects of CDK5-p25 activated by genotoxic stress or abnormal intracellular calcium levels are counteracted by the induction and stabilization of p19INK4d protein reducing the adverse consequences on brain functions.


Subject(s)
Calcium/metabolism , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase Inhibitor p19/metabolism , DNA Repair/genetics , Hippocampus/metabolism , Neurons/metabolism , Amyloid beta-Peptides/pharmacology , Animals , Apoptosis , Cell Line, Tumor , Cell Survival , Cognition/physiology , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase Inhibitor p19/genetics , Cytotoxins/pharmacology , DNA Damage , Feedback, Physiological , Gene Expression Regulation , Hippocampus/cytology , Hippocampus/drug effects , Humans , Mice , Neurons/cytology , Neurons/drug effects , Peptide Fragments/pharmacology , Phosphorylation/drug effects , Primary Cell Culture , Signal Transduction , Transcription, Genetic , Zinostatin/pharmacology
10.
PLoS One ; 8(4): e61143, 2013.
Article in English | MEDLINE | ID: mdl-23593412

ABSTRACT

The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms. If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2 and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually responding to chromatin anomalies.


Subject(s)
Chromatin/metabolism , Cyclin-Dependent Kinase Inhibitor p19/metabolism , DNA Damage , DNA Repair , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/metabolism , Cell Line , Checkpoint Kinase 1 , Checkpoint Kinase 2 , Chloroquine/pharmacology , DNA Repair/drug effects , DNA Repair/radiation effects , DNA-Binding Proteins/metabolism , E2F1 Transcription Factor/metabolism , Humans , Models, Biological , Mutagens/toxicity , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Signal Transduction/radiation effects , Tumor Suppressor Proteins/metabolism , Ultraviolet Rays
11.
PLoS One ; 7(4): e35638, 2012.
Article in English | MEDLINE | ID: mdl-22558186

ABSTRACT

DNA damage triggers a phosphorylation-based signaling cascade known as the DNA damage response. p19INK4d, a member of the INK4 family of CDK4/6 inhibitors, has been reported to participate in the DNA damage response promoting DNA repair and cell survival. Here, we provide mechanistic insight into the activation mechanism of p19INK4d linked to the response to DNA damage. Results showed that p19INK4d becomes phosphorylated following UV radiation, ß-amyloid peptide and cisplatin treatments. ATM-Chk2/ATR-Chk1 signaling pathways were found to be differentially involved in p19INK4d phosphorylation depending on the type of DNA damage. Two sequential phosphorylation events at serine 76 and threonine 141 were identified using p19INK4d single-point mutants in metabolic labeling assays with (32)P-orthophosphate. CDK2 and PKA were found to participate in p19INK4d phosphorylation process and that they would mediate serine 76 and threonine 141 modifications respectively. Nuclear translocation of p19INK4d induced by DNA damage was shown to be dependent on serine 76 phosphorylation. Most importantly, both phosphorylation sites were found to be crucial for p19INK4d function in DNA repair and cell survival. In contrast, serine 76 and threonine 141 were dispensable for CDK4/6 inhibition highlighting the independence of p19INK4d functions, in agreement with our previous findings. These results constitute the first description of the activation mechanism of p19INK4d in response to genotoxic stress and demonstrate the functional relevance of this activation following DNA damage.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase Inhibitor p19/genetics , DNA Repair/genetics , DNA/genetics , Amyloid beta-Peptides/pharmacology , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Cycle/radiation effects , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Cisplatin/pharmacology , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase Inhibitor p19/metabolism , DNA Damage/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/radiation effects , HEK293 Cells , Humans , Mutation , Phosphorylation/drug effects , Phosphorylation/radiation effects , Protein Transport/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/radiation effects , Ultraviolet Rays
12.
Mol Cell Biochem ; 366(1-2): 123-9, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22476863

ABSTRACT

Central to the maintenance of genomic integrity is the cellular DNA damage response. Depending on the type of genotoxic stress and through the activation of multiple signaling cascades, it can lead to cell cycle arrest, DNA repair, senescence, and apoptosis. p19INK4d, a member of the INK4 family of CDK inhibitors, plays a dual role in the DNA damage response, inhibiting cell proliferation and promoting DNA repair. Consistently, p19INK4d has been reported to become upregulated in response to UV irradiation and a great variety of genotoxic agents. Here, this induction is shown to result from a transcriptional stimulatory mechanism that can occur at every phase of the cell cycle except during mitosis. Moreover, evidence is presented that demonstrates that E2F1 is involved in the induction of p19INK4d following UV treatment, as it is prevented by E2F1 protein ablation and DNA-binding inhibition. Specific inhibition of this regulation using triplex-forming oligonucleotides that target the E2F response elements present in the p19INK4d promoter also block p19INK4d upregulation and sensitize cells to DNA damage. These results constitute the first description of a mechanism for the induction of p19INK4d in response to UV irradiation and demonstrate the physiological relevance of this regulation following DNA damage.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p19/metabolism , DNA Damage , E2F1 Transcription Factor/metabolism , Transcriptional Activation/radiation effects , Ultraviolet Rays , Animals , Cell Cycle , Cricetinae , Cyclin-Dependent Kinase Inhibitor p19/genetics , DNA/pharmacology , DNA Repair , E2F1 Transcription Factor/antagonists & inhibitors , E2F1 Transcription Factor/physiology , HEK293 Cells , Humans , Response Elements , Transcription, Genetic/radiation effects
13.
PLoS One ; 6(7): e21938, 2011.
Article in English | MEDLINE | ID: mdl-21765927

ABSTRACT

BACKGROUND: A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under normal conditions, a feature reminiscent of cyclins. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1 through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19 periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased the fraction of cells in S phase. CONCLUSIONS/SIGNIFICANCE: The results described here support a model of normal cell cycle progression in which, following phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes, bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the G1 phase proliferative signal, contributing to the proper coordination of the cell cycle and provides an additional mechanism to limit E2F activity.


Subject(s)
Cell Cycle/genetics , Cyclin-Dependent Kinase Inhibitor p19/genetics , E2F1 Transcription Factor/metabolism , Periodicity , Up-Regulation/genetics , Animals , Base Sequence , Binding Sites , Cell Line , Cell Proliferation , Conserved Sequence/genetics , Cyclin E/metabolism , Cyclin-Dependent Kinase Inhibitor p19/metabolism , Feedback, Physiological , Humans , Models, Biological , Molecular Sequence Data , Oncogene Proteins/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , Transcription, Genetic
14.
IUBMB Life ; 61(5): 537-43, 2009 May.
Article in English | MEDLINE | ID: mdl-19391166

ABSTRACT

E2F1, a member of the E2F family of transcription factors, plays a critical role in controlling both cell cycle progression and apoptotic cell death in response to DNA damage and oncogene activation. Following genotoxic stresses, E2F1 protein is stabilized by phosphorylation and acetylation driven to its accumulation. The aim of the present work was to examine whether the increase in E2F1 protein levels observed after DNA damage is only a reflection of an increase in E2F1 protein stability or is also the consequence of enhanced transcription of the E2F1 gene. The data presented here demonstrates that UV light and other genotoxics induce the transcription of E2F1 gene in an ATM/ATR dependent manner, which results in increasing E2F1 mRNA and protein levels. After genotoxic stress, transcription of cyclin E, an E2F1 target gene, was significantly induced. This induction was the result of two well-differentiated effects, one of them dependent on de novo protein synthesis and the other on the protein stabilization. Our results strongly support a transcriptional effect of DNA damaging agents on E2F1 expression. The results presented herein uncover a new mechanism involving E2F1 in response to genotoxic stress.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Damage/genetics , E2F1 Transcription Factor/metabolism , Protein Serine-Threonine Kinases/metabolism , Transcriptional Activation/genetics , Ataxia Telangiectasia Mutated Proteins , Blotting, Northern , Blotting, Western , Cell Line , Cyclin E/metabolism , DNA Damage/radiation effects , Humans , Oligodeoxyribonucleotides/genetics , Phosphorylation , Transcriptional Activation/radiation effects , Ultraviolet Rays
15.
Int J Biochem Cell Biol ; 41(6): 1344-53, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19130897

ABSTRACT

p19INK4d promotes survival of several cell lines after UV irradiation due to enhanced DNA repair, independently of CDK4 inhibition. To further understand the action of p19INK4d in the cellular response to DNA damage, we aimed to elucidate whether this novel regulator plays a role only in mechanisms triggered by UV or participates in diverse mechanisms initiated by different genotoxics. We found that p19INK4d is induced in cells injured with cisplatin or beta-amyloid peptide as robustly as with UV. The mentioned genotoxics transcriptionally activate p19INK4d expression as demonstrated by run-on assay without influencing its mRNA stability and with partial requirement of protein synthesis. It is not currently known whether DNA damage-inducible genes are turned on by the DNA damage itself or by the consequences of that damage. Experiments carried out in cells transfected with distinct damaged DNA structures revealed that the damage itself is not responsible for the observed up-regulation. It is also not known whether the increased expression of DNA-damage-inducible genes is related to immediate protective responses such as DNA repair or to more delayed responses such as cell cycle arrest or apoptosis. We found that ectopic expression of p19INK4d improves DNA repair ability and protects neuroblastoma cells from apoptosis caused by cisplatin or beta-amyloid peptide. Using clonal cell lines where p19INK4d levels can be modified at will, we show that p19INK4d expression correlates with increased survival and clonogenicity. The results presented here, prompted us to suggest that p19INK4d displays an important role in an early stage of cellular DNA damage response.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p19/metabolism , DNA Damage , Amyloid beta-Peptides/pharmacology , Animals , Apoptosis/genetics , Apoptosis/radiation effects , Blotting, Northern , Cell Line , Cell Survival , Cisplatin/pharmacology , Cricetinae , DNA Repair , Humans , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Transcriptional Activation , Transfection , Tumor Suppressor Protein p53/metabolism , Ultraviolet Rays , Up-Regulation
16.
IUBMB Life ; 59(7): 419-26, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17654117

ABSTRACT

The cyclin D-Cdk4-6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and antimitogenic stimuli. The members of INK4 family, comprising p16(INK4a), p15(INK4b), p18(INK4c), and p19(INK4d), block the progression of the cell cycle by binding to either Cdk4 or Cdk6 and inhibiting the action of cyclin D. These INK4 proteins share a similar structure dominated by several ankyrin repeats. Although they appear to be structurally redundant and equally potent as inhibitors, the INK4 family members are differentially expressed during mouse development. The striking diversity in the pattern of expression of INK4 genes suggested that this family of cell cycle inhibitors might have cell lineage-specific or tissue-specific functions. The INK4 proteins are commonly lost or inactivated by mutations in diverse types of cancer, and they represent established or candidate tumor suppressors. Apart from their capacity to arrest cells in the G1-phase of the cell cycle they have been shown to participate in an increasing number of cellular processes. Given their emerging roles in fundamental physiological as well as pathological processes, it is interesting to explore the diverse roles for the individual INK4 family members in different functions other than cell cycle regulation. Extensive studies, over the past few years, uncover the involvement of INK4 proteins in senescence, apoptosis, DNA repair, and multistep oncogenesis. We will focus the discussion here on these unexpected issues.


Subject(s)
Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase Inhibitor Proteins/physiology , Multigene Family , Animals , Apoptosis/genetics , Apoptosis/physiology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cellular Senescence/genetics , Cellular Senescence/physiology , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase Inhibitor Proteins/genetics , DNA Repair/physiology , Humans
17.
DNA Repair (Amst) ; 6(5): 626-38, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17218167

ABSTRACT

Genome integrity and cell proliferation and survival are regulated by an intricate network of pathways that includes cell cycle checkpoints, DNA repair and recombination, and programmed cell death. It makes sense that there should be a coordinated regulation of these different processes, but the components of such mechanisms remain unknown. In this report, we demonstrate that p19INK4d expression enhances cell survival under genotoxic conditions. By using p19INK4d-overexpressing clones, we demonstrated that p19INK4d expression correlates with the cellular resistance to UV treatment with increased DNA repair activity against UV-induced lesions. On the contrary, cells transfected with p19INK4d antisense cDNA show reduced ability to repair DNA damage and increased sensitivity to genotoxic insult when compared with their p19INK4d-overexpressing counterparts. Consistent with these findings, our studies also show that p19INK4d-overexpressing cells present not only a minor accumulation of UV-induced chromosomal aberrations but a lower frequency of spontaneous chromosome abnormalities than p19INK4d-antisense cells. Lastly, we suggest that p19INK4d effects are dissociated from its role as CDK4/6 inhibitor. The results presented herein support a crucial role for p19INK4d in regulating genomic stability and overall cell viability under conditions of genotoxic stress. We propose that p19INK4d would belong to a protein network that would integrate DNA repair, apoptotic and checkpoint mechanisms in order to maintain the genomic integrity.


Subject(s)
Cell Survival/physiology , Chromosome Aberrations , Cyclin-Dependent Kinase Inhibitor p19/metabolism , Cyclin-Dependent Kinase Inhibitor p19/pharmacology , DNA Damage/radiation effects , DNA Repair/physiology , Animals , Blotting, Northern , Blotting, Western , Cell Survival/radiation effects , Colony-Forming Units Assay , DNA Repair/radiation effects , Genomic Instability , Humans , Immunoprecipitation , Mice , Pyrimidine Dimers , RNA, Messenger/genetics , Radiation Tolerance , Thymidine/metabolism , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...