Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Microsc Microanal ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39226242

ABSTRACT

As hydrogen is touted as a key player in the decarbonization of modern society, it is critical to enable quantitative hydrogen (H) analysis at high spatial resolution and, if possible, at the atomic scale. H has a known deleterious impact on the mechanical properties (strength, ductility, toughness) of most materials that can hinder their use as part of the infrastructure of a hydrogen-based economy. Enabling H mapping including local hydrogen concentration analyses at specific microstructural features is essential for understanding the multiple ways that H affect the properties of materials including embrittlement mechanisms and their synergies. In addition, spatial mapping and quantification of hydrogen isotopes is essential to accurately predict tritium inventory of future fusion power plants thus ensuring their safe and efficient operation. Atom probe tomography (APT) has the intrinsic capability to detect H and deuterium (D), and in principle the capacity for performing quantitative mapping of H within a material's microstructure. Yet, the accuracy and precision of H analysis by APT remain affected by complex field evaporation behavior and the influence of residual hydrogen from the ultrahigh vacuum chamber that can obscure the signal of H from within the material. The present article reports a summary of discussions at a focused workshop held at the Max-Planck Institute for Sustainable Materials in April 2024. The workshop was organized to pave the way to establishing best practices in reporting APT data for the analysis of H. We first summarize the key aspects of the intricacies of H analysis by APT and then propose a path for better reporting of the relevant data to support interpretation of APT-based H analysis in materials.

2.
Microsc Microanal ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905154

ABSTRACT

There has been an increasing interest in atom probe tomography (APT) to characterize hydrated and biological materials. A major benefit of APT compared to microscopy techniques more commonly used in biology is its combination of outstanding three-dimensional (3D) spatial resolution and mass sensitivity. APT has already been successfully used to characterize biominerals, revealing key structural information at the atomic scale, however there are many challenges inherent to the analysis of soft hydrated materials. New preparation protocols, often involving specimen preparation and transfer at cryogenic temperature, enable APT analysis of hydrated materials and have the potential to enable 3D atomic scale characterization of biological materials in the near-native hydrated state. In this study, samples of pure water at the tips of tungsten needle specimens were prepared at room temperature by graphene encapsulation. A comparative study was conducted where specimens were transferred at either room temperature or cryo-temperature and analyzed by APT by varying the flight path and pulsing mode. The differences between the analysis workflows are presented along with recommendations for future studies, and the compatibility between graphene coating and cryogenic workflows is demonstrated.

3.
Nano Lett ; 22(16): 6501-6508, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35926226

ABSTRACT

New high-resolution imaging methods for biological samples such as atom probe tomography (APT), facilitated by the invention of laser-pulsed atom probes and cryo-transfer procedures, have recently emerged. However, ensuring the vitreous state of the fabricated aqueous needle-shaped APT samples remains a challenge despite it being crucial for characterizing biomolecules such as proteins and cellular architectures in their near-native state. Our work investigated three potential approaches: (1) open microcapillary (OMC) method, (2) high-pressure freezing method (HPF), and (3) graphene encapsulation method. Diffraction patterns of the needle specimens acquired by cryo-TEM have demonstrated the vitreous state of the ice needles, although limited to the tip regions, has been achieved with the three proposed approaches. With the capability to prepare vitreous ice needles from hydrated samples of up to ∼200 µm thickness (HPF), combined use of the three approaches opens new avenues for future near-atomic imaging of biological cells in their near-native state.


Subject(s)
Ice , Water , Cryoelectron Microscopy/methods , Freezing
4.
Ultramicroscopy ; 216: 113036, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32540722

ABSTRACT

A new method for imaging liquid specimens with atom probe tomography (APT) is proposed by introducing graphene encapsulation. By tuning the encapsulation speed and the number of encapsulations, controllable volumes of liquid can be encapsulated on a pre-sharpened specimen tip, with the end radius less than 75 nm to allow field ionization and evaporation. Encapsulation of liquid has been confirmed by using various characterization techniques, including electron microscopy and stimulated emission depletion microscopy. The graphene-encapsulated liquid specimen was then directly frozen at the cryogenic stage inside the atom probe instrument, followed by APT imaging in laser-pulsed mode. Using water as a test example, water-related ions have been identified in the acquired mass spectrum, which are spatially correlated to a reconstructed three-dimensional volume of water on top of the base specimen tip, as clearly revealed in the chemical maps. In addition, the proposed method has also been shown to produce multiple liquid specimens simultaneously on a pre-sharpened silicon micro-tip array for high-throughput APT imaging of liquid specimens. It is expected that the proposed lift-out-free method for preparing APT specimens in their hydrated state will open a new avenue for obtaining insights into various materials at atomic resolution.

5.
Anal Chem ; 92(7): 5168-5177, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32155328

ABSTRACT

Unravelling the three-dimensional structures and compositions of biological macromolecules sheds light on their functions and also contributes to the design of future biochemical compounds and processes. Atom probe tomography (APT) is demonstrated in this research as a new and effective approach to explore the structure and chemical composition of a single protein in the hydrated state. By introducing graphene encapsulation, proteins in solution can be immobilized on a metal specimen tip, with an end radius in the range of 50 nm to allow field ionization and evaporation. Using a ferritin particle as an example, analysis of the mass spectrum and reconstructed 3D chemical maps at near-atomic resolution acquired from APT reveals the core consisting of iron and iron oxides, the peptide shell containing amino acids, and the interior interface between the iron core and the peptide shell. The quantitative distribution and proportion of iron isotopes from a single ferritin core have been determined for the first time, as well as identification of the possible sites of amino acids inside the protein shell. The complete experimental protocol is straightforward and lays a foundation for future exploration of various macromolecules in a controlled environment.


Subject(s)
Ferritins/analysis , Tomography, X-Ray Computed , Animals , Graphite/chemistry , Horses , Spleen/chemistry
6.
Ultramicroscopy ; 181: 150-159, 2017 10.
Article in English | MEDLINE | ID: mdl-28558288

ABSTRACT

We present a novel approach for analysis of low-conductivity and insulating materials with conventional pulsed-voltage atom probe tomography (APT), by incorporating an ultrathin metallic coating on focused ion beam prepared needle-shaped specimens. Finite element electrostatic simulations of coated atom probe specimens were performed, which suggest remarkable improvement in uniform voltage distribution and subsequent field evaporation of the insulated samples with a metallic coating of approximately 10nm thickness. Using design of experiment technique, an experimental investigation was performed to study physical vapor deposition coating of needle specimens with end tip radii less than 100nm. The final geometries of the coated APT specimens were characterized with high-resolution scanning electron microscopy and transmission electron microscopy, and an empirical model was proposed to determine the optimal coating thickness for a given specimen size. The optimal coating strategy was applied to APT specimens of resin embedded Au nanospheres. Results demonstrate that the optimal coating strategy allows unique pulsed-voltage atom probe analysis and 3D imaging of biological and insulated samples.


Subject(s)
Gold/chemistry , Nanospheres/chemistry , Tomography , Bacteria/ultrastructure , Computational Biology , Electric Conductivity , Empirical Research , Image Processing, Computer-Assisted , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Specimen Handling
7.
Nano Lett ; 16(11): 7113-7120, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27650306

ABSTRACT

Emergence of multidrug resistant Gram-negative bacteria has caused a global health crisis and last-line class of antibiotics such as polymyxins are increasingly used. The chemical composition at the cell surface plays a key role in antibiotic resistance. Unlike imaging the cellular ultrastructure with well-developed electron microscopy, the acquisition of a high-resolution chemical map of the bacterial surface still remains a technological challenge. In this study, we developed an atom probe tomography (APT) analysis approach to acquire mass spectra in the pulsed-voltage mode and reconstructed the 3D chemical distribution of atoms and molecules in the subcellular domain at the near-atomic scale. Using focused ion beam (FIB) milling together with micromanipulation, site-specific samples were retrieved from a single cell of Acinetobacter baumannii prepared as needle-shaped tips with end radii less than 60 nm, followed by a nanoscale coating of silver in the order of 10 nm. The significantly elevated conductivity provided by the metallic coating enabled successful and routine field evaporation of the biological material, with all the benefits of pulsed-voltage APT. In parallel with conventional cryo-TEM imaging, our novel approach was applied to investigate polymyxin-susceptible and -resistant strains of A. baumannii after treatment of polymyxin B. Acquired atom probe mass spectra from the cell envelope revealed characteristic fragments of phosphocholine from the polymyxin-susceptible strain, but limited signals from this molecule were detected in the polymyxin-resistant strain. This study promises unprecedented capacity for 3D nanoscale imaging and chemical mapping of bacterial cells at the ultimate 3D spatial resolution using APT.

8.
Ultramicroscopy ; 159 Pt 2: 324-37, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26095825

ABSTRACT

Whilst atom probe tomography (APT) is a powerful technique with the capacity to gather information containing hundreds of millions of atoms from a single specimen, the ability to effectively use this information creates significant challenges. The main technological bottleneck lies in handling the extremely large amounts of data on spatial-chemical correlations, as well as developing new quantitative computational foundations for image reconstruction that target critical and transformative problems in materials science. The power to explore materials at the atomic scale with the extraordinary level of sensitivity of detection offered by atom probe tomography has not been not fully harnessed due to the challenges of dealing with missing, sparse and often noisy data. Hence there is a profound need to couple the analytical tools to deal with the data challenges with the experimental issues associated with this instrument. In this paper we provide a summary of some key issues associated with the challenges, and solutions to extract or "mine" fundamental materials science information from that data.

9.
Nat Commun ; 5: 5501, 2014 Nov 19.
Article in English | MEDLINE | ID: mdl-25407499

ABSTRACT

Microscopy encompasses a wide variety of forms and scales. So too does the array of simulation techniques developed that correlate to and build upon microstructural information. Nevertheless, a true nexus between microscopy and atomistic simulations is lacking. Atom probe has emerged as a potential means of achieving this goal. Atom probe generates three-dimensional atomistic images in a format almost identical to many atomistic simulations. However, this data is imperfect, preventing input into computational algorithms to predict material properties. Here we describe a methodology to overcome these limitations, based on a hybrid data format, blending atom probe and predictive Monte Carlo simulations. We create atomically complete and lattice-bound models of material specimens. This hybrid data can then be used as direct input into density functional theory simulations to calculate local energetics and elastic properties. This research demonstrates the role that atom probe combined with theoretical approaches can play in modern materials engineering.

10.
Langmuir ; 30(49): 14817-23, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25415412

ABSTRACT

Atom probe tomography (APT) has been used to investigate the surface and sub-surface microstructures of aluminum alloy 2024 (AA2024) in the T3 condition (solution heat treated, cold worked, and naturally aged to a substantially stable condition). This study revealed surface Cu enrichment on the alloy matrix, local chemical structure around a dispersoid Al20Mn3Cu2 particle including a Cu-rich particle and S-phase particle on its external surface. Moreover, there was a significant level of hydrogen within the dispersoid, indicating that it is a hydrogen sink. These observations of the nanoscale structure around the dispersoid particle have considerable implications for understanding both corrosion and hydrogen embrittlement in high-strength aluminum alloys.

11.
Microsc Microanal ; 19(6): 1581-5, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24103578

ABSTRACT

A multi-scale investigation of twin bundles in Fe-22Mn-0.6C (wt%) twinning-induced plasticity steel after tensile deformation has been carried out by truly correlative means; using electron channelling contrast imaging combined with electron backscatter diffraction, high-resolution secondary ion mass spectrometry, scanning transmission electron microscopy, and atom probe tomography on the exact same region of interest in the sample. It was revealed that there was no significant segregation of Mn or C to the twin boundary interfaces.

12.
Acta Crystallogr A ; 68(Pt 5): 547-60, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22893238

ABSTRACT

The generalized multicomponent short-range order (GM-SRO) parameter has been adapted for the characterization of short-range order within the highly chemically and spatially resolved three-dimensional atomistic images provided by the microscopy technique of atom-probe tomography (APT). It is demonstrated that, despite the experimental limitations of APT, in many cases the GM-SRO results derived from APT data can provide a highly representative description of the atomic scale chemical arrangement in the original specimen. Further, based upon a target set of the GM-SRO parameters, measured from APT experiments, a Monte Carlo algorithm was utilized to simulate statistically equivalent atomistic systems which, unlike APT data, are complete and lattice based. The simulations replicate solute structures that are statistically consistent with other correlation measures such as solute cluster distributions, enable more quantitative characterization of nanostructural phenomena in the original specimen and, significantly, can be incorporated directly into other models and simulations.

13.
Ultramicroscopy ; 111(11): 1619-24, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21946002

ABSTRACT

Progress in the reconstruction for atom probe tomography has been limited since the first implementation of the protocol proposed by Bas et al. in 1995. This approach and those subsequently developed assume that the geometric parameters used to build the three-dimensional atom map are constant over the course of an analysis. Here, we test this assumption within the analyses of low-alloyed materials. By building upon methods recently proposed to measure the tomographic reconstruction parameters, we demonstrate that this assumption can introduce significant limitations in the accuracy of the analysis. Moreover, we propose a strategy to alleviate this problem through the implementation of a new reconstruction algorithm that dynamically accommodates variations in the tomographic reconstruction parameters.

14.
Microsc Microanal ; 17(2): 226-39, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21382222

ABSTRACT

Atom probe tomography (APT) represents a significant step toward atomic resolution microscopy, analytically imaging individual atoms with highly accurate, though imperfect, chemical identity and three-dimensional (3D) positional information. Here, a technique to retrieve crystallographic information from raw APT data and restore the lattice-specific atomic configuration of the original specimen is presented. This lattice rectification technique has been applied to a pure metal, W, and then to the analysis of a multicomponent Al alloy. Significantly, the atoms are located to their true lattice sites not by an averaging, but by triangulation of each particular atom detected in the 3D atom-by-atom reconstruction. Lattice rectification of raw APT reconstruction provides unprecedented detail as to the fundamental solute hierarchy of the solid solution. Atomic clustering has been recognized as important in affecting alloy behavior, such as for the Al-1.1 Cu-1.7 Mg (at. %) investigated here, which exhibits a remarkable rapid hardening reaction during the early stages of aging, linked to clustering of solutes. The technique has enabled lattice-site and species-specific radial distribution functions, nearest-neighbor analyses, and short-range order parameters, and we demonstrate a characterization of solute-clustering with unmatched sensitivity and precision.

SELECTION OF CITATIONS
SEARCH DETAIL