Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 506(2): 423-8, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22759518

ABSTRACT

Australian marsupials are unique fauna that have evolved and adapted to unique environments and thus it is likely that their detoxification systems differ considerably from those of well-studied eutherian mammals. Knowledge of these processes in marsupials is therefore vital to understanding the consequences of exposure to xenobiotics. Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of both xenobiotics and endogenous substrates. In this study we have cloned and characterized CYP3A70, the first identified member of the CYP3A gene subfamily from Eastern gray kangaroo (Macropus giganteus). A 1665 base pair kangaroo hepatic CYP3A complete cDNA, designated CYP3A70, was cloned by reverse transcription-polymerase chain reaction approaches, which encodes a protein of 506 amino acids. The CYP3A70 cDNA shares approximately 71% nucleotide and 65% amino acid sequence homology to human CYP3A4 and displays high sequence similarity to other published mammalian CYP3As from human, monkey, cow, pig, dog, rat, rabbit, mouse, hamster, and guinea pig. Transfection of the CYP3A70 cDNAs into 293T cells resulted in stable cell lines expressing a CYP3A immuno-reactive protein that was recognized by a goat anti-human CYP3A4 polyclonal antibody. The anti-human CYP3A4 antibody also detected immunoreactive proteins in liver microsomes from all test marsupials, including the kangaroo, koala, wallaby, and wombat, with multiple CYP3A immunoreactive bands observed in kangaroo and wallaby tissues. Relatively, very low CYP catalytic activity was detected for the kangaroo CYP3A70 cDNA-expressed proteins (19.6 relative luminescent units/µg protein), which may be due to low protein expression levels. Collectively, this study provides primary molecular data regarding the Eastern kangaroo hepatic CYP3A70 gene and enables further functional analyses of CYP3A enzymes in marsupials.


Subject(s)
Cytochrome P-450 CYP3A/chemistry , Cytochrome P-450 CYP3A/genetics , Gene Expression Regulation , Animals , Cell Line , Cloning, Molecular , DNA Primers/genetics , DNA, Complementary/metabolism , Female , Humans , Liver/metabolism , Macropodidae , Male , Marsupialia/genetics , Models, Genetic , Protein Isoforms , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction/methods , Species Specificity
2.
Gene ; 2011 Aug 18.
Article in English | MEDLINE | ID: mdl-21888957

ABSTRACT

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

3.
Comp Biochem Physiol C Toxicol Pharmacol ; 154(4): 367-76, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21807118

ABSTRACT

Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of xenobiotics and endogenous substrates. Previously, we cloned and characterised the CYP2C, CYP4A, and CYP4B gene subfamilies from marsupials and demonstrated important species-differences in both activity and tissue expression of these CYP enzymes. Recently, we isolated the Eastern grey kangaroo CYP3A70. Here we have cloned and characterised the second identified member of marsupial CYP3A gene subfamily, CYP3A78 from the koala (Phascolarctos cinereus). In addition, we have examined the gender-differences in microsomal erythromycin N-demethylation activity (a CYP3A marker) and CYP3A protein expression across test marsupial species. Significant differences in hepatic erythromycin N-demethylation activity were observed between male and female koalas, with the activity detected in female koalas being 2.5-fold higher compared to that in male koalas (p<0.01). No gender-differences were observed in tammar wallaby or Eastern grey kangaroo. Immunoblot analysis utilising anti-human CYP3A4 antibody detected immunoreactive proteins in liver microsomes from all test male and female marsupials including the koala, tammar wallaby, and Eastern grey kangaroo, with no gender-differences detected across test marsupials. A 1610 bp koala hepatic CYP3A complete cDNA, designated CYP3A78, was cloned by reverse transcription-polymerase chain reaction approaches. It displays 64% nucleotide and 57% amino acid sequence identity to the Eastern grey kangaroo CYP3A70. The CYP3A78 cDNA encodes a protein of 515 amino acids, shares approximately 68% nucleotide and 56% amino acid sequence identity to human CYP3A4, and displays high sequence similarity to other published mammalian CYP3As from human, monkey, cow, pig, dog, rat, rabbit, mouse, hamster, and guinea pig. Collectively, this study provides primary molecular data regarding koala hepatic CYP3A78 gene and enables further functional analyses of CYP3A enzymes in marsupials. Given the significant role that CYP3A enzymes play in the metabolism of both endogenous and exogenous compounds, the clone provides an important step in elucidating the metabolic capacity of marsupials.


Subject(s)
Cytochrome P-450 CYP3A/genetics , Phascolarctidae/genetics , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Cytochrome P-450 CYP3A/metabolism , Female , Humans , Male , Marsupialia/genetics , Microsomes, Liver/enzymology , Molecular Sequence Data , Sequence Alignment , Species Specificity
4.
Article in English | MEDLINE | ID: mdl-20826229

ABSTRACT

Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of xenobiotics and endogenous substrates. We have previously reported the cloning and characterisation of the koala CYP4A15, the first reported member of the CYP4 family from marsupials, and have demonstrated important species differences in CYP4A activity and tissue expression. In the present study, the cloning of CYP4B1 in the wallaby (Macropus eugenii) and their expression across marsupials is described. Rabbit anti-mouse CYP4B1 antibody detected immunoreactive proteins in lung and liver microsomes from all test marsupials, with relative weak signal detected from the koala, suggesting a species-specific expression. Microsomal 2-aminofluorene bio-activation (a CYP4B1 marker) in wallaby lung was comparable to that of rabbit, with significant higher activities detected in wallaby liver and kidneys compared to rabbit. A 1548bp wallaby lung CYP4B complete cDNA, designated CYP4B1, which encodes a protein of 510 amino acids and shares 72% nucleotide and 69% amino acid sequence identity to human CYP4B1, was cloned by polymerase chain reaction approaches. The results demonstrate the presence of wallaby CYP4B1 that shares several common features with other published CYP4Bs; however the wallaby CYP4B1 cDNA contains four extra amino acid residues at the NH2-terminal, a fundamentally conserved transmembrane anchor of all eukaryote CYPs.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Lung/enzymology , Macropodidae/metabolism , Amino Acid Sequence , Animals , Aryl Hydrocarbon Hydroxylases/genetics , DNA, Complementary/isolation & purification , Fluorenes/metabolism , Immunoblotting , Kidney/enzymology , Liver/enzymology , Microsomes/enzymology , Molecular Sequence Data , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...