Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Genet (Hoboken) ; 4(3): 2200017, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37766803

ABSTRACT

Trauma is ubiquitous, but only a subset of those who experience trauma will develop posttraumatic stress disorder (PTSD). In this review, it is argued that to determine who is at risk of developing PTSD, it is critical to examine the genetic etiology of the disorder and individual trauma profiles of those who are susceptible. First, the state of current PTSD genetic research is described, with a particular focus on studies that present evidence for trauma type specificity, or for differential genetic etiology according to gender or race. Next, approaches that leverage non-traditional phenotyping approaches are reviewed to identify PTSD-associated variants and biology, and the relative advantages and limitations inherent in these studies are reflected on. Finally, it is discussed how trauma might influence the heritability of PTSD, through type, risk factors, genetics, and associations with PTSD symptomology.

2.
Transl Psychiatry ; 13(1): 129, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37076454

ABSTRACT

Major depressive disorder (MDD) is a complex and heterogeneous psychiatric syndrome with genetic and environmental influences. In addition to neuroanatomical and circuit-level disturbances, dysregulation of the brain transcriptome is a key phenotypic signature of MDD. Postmortem brain gene expression data are uniquely valuable resources for identifying this signature and key genomic drivers in human depression; however, the scarcity of brain tissue limits our capacity to observe the dynamic transcriptional landscape of MDD. It is therefore crucial to explore and integrate depression and stress transcriptomic data from numerous, complementary perspectives to construct a richer understanding of the pathophysiology of depression. In this review, we discuss multiple approaches for exploring the brain transcriptome reflecting dynamic stages of MDD: predisposition, onset, and illness. We next highlight bioinformatic approaches for hypothesis-free, genome-wide analyses of genomic and transcriptomic data and their integration. Last, we summarize the findings of recent genetic and transcriptomic studies within this conceptual framework.


Subject(s)
Depressive Disorder, Major , Humans , Transcriptome , Genome-Wide Association Study , Brain/metabolism , Computational Biology , Genetic Predisposition to Disease
3.
Mol Psychiatry ; 27(4): 2225-2246, 2022 04.
Article in English | MEDLINE | ID: mdl-35177824

ABSTRACT

Despite experiencing a significant trauma, only a subset of World Trade Center (WTC) rescue and recovery workers developed posttraumatic stress disorder (PTSD). Identification of biomarkers is critical to the development of targeted interventions for treating disaster responders and potentially preventing the development of PTSD in this population. Analysis of gene expression from these individuals can help in identifying biomarkers of PTSD. We established a well-phenotyped sample of 371 WTC responders, recruited from a longitudinal WTC responder cohort using stratified random sampling, by obtaining blood, self-reported and clinical interview data. Using bulk RNA-sequencing from whole blood, we examined the association between gene expression and WTC-related PTSD symptom severity on (i) highest lifetime Clinician-Administered PTSD Scale (CAPS) score, (ii) past-month CAPS score, and (iii) PTSD symptom dimensions using a 5-factor model of re-experiencing, avoidance, emotional numbing, dysphoric arousal and anxious arousal symptoms. We corrected for sex, age, genotype-derived principal components and surrogate variables. Finally, we performed a meta-analysis with existing PTSD studies (total N = 1016), using case/control status as the predictor and correcting for these variables. We identified 66 genes significantly associated with total highest lifetime CAPS score (FDR-corrected p < 0.05), and 31 genes associated with total past-month CAPS score. Our more granular analyses of PTSD symptom dimensions identified additional genes that did not reach statistical significance in our analyses with total CAPS scores. In particular, we identified 82 genes significantly associated with lifetime anxious arousal symptoms. Several genes significantly associated with multiple PTSD symptom dimensions and total lifetime CAPS score (SERPINA1, RPS6KA1, and STAT3) have been previously associated with PTSD. Geneset enrichment of these findings has identified pathways significant in metabolism, immune signaling, other psychiatric disorders, neurological signaling, and cellular structure. Our meta-analysis revealed 10 genes that reached genome-wide significance, all of which were downregulated in cases compared to controls (CIRBP, TMSB10, FCGRT, CLIC1, RPS6KB2, HNRNPUL1, ALDOA, NACA, ZNF429 and COPE). Additionally, cellular deconvolution highlighted an enrichment in CD4 T cells and eosinophils in responders with PTSD compared to controls. The distinction in significant genes between total lifetime CAPS score and the anxious arousal symptom dimension of PTSD highlights a potential biological difference in the mechanism underlying the heterogeneity of the PTSD phenotype. Future studies should be clear about methods used to analyze PTSD status, as phenotypes based on PTSD symptom dimensions may yield different gene sets than combined CAPS score analysis. Potential biomarkers implicated from our meta-analysis may help improve therapeutic target development for PTSD.


Subject(s)
September 11 Terrorist Attacks , Stress Disorders, Post-Traumatic , Anxiety , Chloride Channels , Gene Expression , Humans , RNA-Binding Proteins , Self Report , September 11 Terrorist Attacks/psychology , Stress Disorders, Post-Traumatic/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...