Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(21): e2400933121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38748571

ABSTRACT

Topological defects play a central role in the physics of many materials, including magnets, superconductors, and liquid crystals. In active fluids, defects become autonomous particles that spontaneously propel from internal active stresses and drive chaotic flows stirring the fluid. The intimate connection between defect textures and active flow suggests that properties of active materials can be engineered by controlling defects, but design principles for their spatiotemporal control remain elusive. Here, we propose a symmetry-based additive strategy for using elementary activity patterns, as active topological tweezers, to create, move, and braid such defects. By combining theory and simulations, we demonstrate how, at the collective level, spatial activity gradients act like electric fields which, when strong enough, induce an inverted topological polarization of defects, akin to a negative susceptibility dielectric. We harness this feature in a dynamic setting to collectively pattern and transport interacting active defects. Our work establishes an additive framework to sculpt flows and manipulate active defects in both space and time, paving the way to design programmable active and living materials for transport, memory, and logic.

2.
Phys Rev E ; 108(4): L042602, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37978678

ABSTRACT

The rheology of biological tissue is key to processes such as embryo development, wound healing, and cancer metastasis. Vertex models of confluent tissue monolayers have uncovered a spontaneous liquid-solid transition tuned by cell shape; and a shear-induced solidification transition of an initially liquidlike tissue. Alongside this jamming/unjamming behavior, biological tissue also displays an inherent viscoelasticity, with a slow time and rate-dependent mechanics. With this motivation, we combine simulations and continuum theory to examine the rheology of the vertex model in nonlinear shear across a full range of shear rates from quastistatic to fast, elucidating its nonlinear stress-strain curves after the inception of shear of finite rate, and its steady state flow curves of stress as a function of strain rate. We formulate a rheological constitutive model that couples cell shape to flow and captures both the tissue solid-liquid transition and its rich linear and nonlinear rheology.


Subject(s)
Embryonic Development , Motivation , Cell Shape , Rheology , Wound Healing
3.
Soft Matter ; 19(40): 7744-7752, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37789810

ABSTRACT

Using a mean field approach and simulations, we study the non-linear mechanical response of the vertex model (VM) of biological tissue to compression and dilation. The VM is known to exhibit a transition between solid and fluid-like, or floppy, states driven by geometric incompatibility. Target perimeter and area set a target shape which may not be geometrically achievable, thereby engendering frustration. Previously, an asymmetry in the linear elastic response was identified at the rigidity transition between compression and dilation. Here we show that the asymmetry extends away from the transition point for finite strains. Under finite compression, an initially solid VM can completely relax perimeter tension, resulting in a drop discontinuity in the mechanical response. Conversely, an initially floppy VM under dilation can rigidify and have a higher response. These observations imply that re-scaling of cell area shifts the transition between rigid and floppy states. Based on this insight, we calculate the re-scaling of cell area engendered by intrinsic curvature and write a prediction for the rigidity transition in the presence of curvature. The shift of the rigidity transition in the presence of curvature for the VM provides a new metric for predicting tissue rigidity from image data of curved tissues in a manner analogous to the flat case.


Subject(s)
Elasticity
4.
Soft Matter ; 19(40): 7828-7835, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37796173

ABSTRACT

We use numerical simulations and linear stability analysis to study the dynamics of an active liquid crystal film on a substrate in the regime where the passive system would be isotropic. Extensile activity builds up local orientational order and destabilizes the quiescent isotropic state above a critical activity, eventually resulting in spatiotemporal chaotic dynamics akin to the one observed ubiquitously in the nematic state. Here we show that tuning substrate friction yields a variety of emergent structures at intermediate activity, including lattices of flow vortices with associated regular arrangements of topological defects and a new state where flow vortices trap pairs of +1/2 defect that chase each other's tail. These chiral units spontaneously pick the sense of rotation and organize in a hexagonal lattice, surrounded by a diffuse flow of opposite rotation to maintain zero net vorticity. The length scale of these emergent structures is set by the screening length of the flow, controlled by the shear viscosity η and the substrate friction Γ, and can be captured by simple mode selection of the vortical flows. We demonstrate that the emergence of coherent structures can be interpreted as a phase separation of vorticity, where friction plays a role akin to that of birth/death processes in breaking conservation of the phase separating species and selecting a characteristic scale for the patterns. Our work shows that friction provides an experimentally accessible tuning parameter for designing controlled active flows.

5.
Soft Matter ; 19(42): 8172-8178, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37850477

ABSTRACT

Using a multi-phase field model, we examine how particle deformability, which is a proxy for cell stiffness, affects motility induced phase separation (MIPS). We show that purely repulsive deformable, i.e., squishy, cells phase separate more effectively than their rigid counterparts. This can be understood as due to the fact that deformability increases the effective duration of collisions. In addition, the dense regions become increasingly disordered as deformability increases. Our results contextualize the applicability of MIPS to biological systems and have implications for how cells in biological systems may self-organize.

6.
Soft Matter ; 19(17): 3080-3091, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37039037

ABSTRACT

The vertex model of epithelia describes the apical surface of a tissue as a tiling of polygonal cells, with a mechanical energy governed by deviations in cell shape from preferred, or target, area, A0, and perimeter, P0. The model exhibits a rigidity transition driven by geometric incompatibility as tuned by the target shape index, . For with p*(6) the perimeter of a regular hexagon of unit area, a cell can simultaneously attain both the preferred area and preferred perimeter. As a result, the tissue is in a mechanically soft compatible state, with zero shear and Young's moduli. For p0 < p*(6), it is geometrically impossible for any cell to realize the preferred area and perimeter simultaneously, and the tissue is in an incompatible rigid solid state. Using a mean-field approach, we present a complete analytical calculation of the linear elastic moduli of an ordered vertex model. We analyze a relaxation step that includes non-affine deformations, leading to a softer response than previously reported. The origin of the vanishing shear and Young's moduli in the compatible state is the presence of zero-energy deformations of cell shape. The bulk modulus exhibits a jump discontinuity at the transition and can be lower in the rigid state than in the fluid-like state. The Poisson's ratio can become negative which lowers the bulk and Young's moduli. Our work provides a unified treatment of linear elasticity for the vertex model and demonstrates that this linear response is protocol-dependent.

7.
Proc Natl Acad Sci U S A ; 120(13): e2220167120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36947516

ABSTRACT

Orientational order, encoded in anisotropic fields, plays an important role during the development of an organism. A striking example of this is the freshwater polyp Hydra, where topological defects in the muscle fiber orientation have been shown to localize to key features of the body plan. This body plan is organized by morphogen concentration gradients, raising the question how muscle fiber orientation, morphogen gradients and body shape interact. Here, we introduce a minimal model that couples nematic orientational order to the gradient of a morphogen field. We show that on a planar surface, alignment to a radial concentration gradient can induce unbinding of topological defects, as observed during budding and tentacle formation in Hydra, and stabilize aster/vortex-like defects, as observed at a Hydra's mouth. On curved surfaces mimicking the morphologies of Hydra in various stages of development-from spheroid to adult-our model reproduces the experimentally observed reorganization of orientational order. Our results suggest how gradient alignment and curvature effects may work together to control orientational order during development and lay the foundations for future modeling efforts that will include the tissue mechanics that drive shape deformations.


Subject(s)
Hydra , Animals , Anisotropy , Morphogenesis , Hydra/physiology , Regeneration/physiology , Body Patterning
8.
R Soc Open Sci ; 10(2): 221229, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36816847

ABSTRACT

We study the dynamics of topological defects in active nematic films with spatially varying activity and consider two set-ups: (i) a constant activity gradient and (ii) a sharp jump in activity. A constant gradient of extensile (contractile) activity endows the comet-like +1/2 defect with a finite vorticity that drives the defect to align its nose in the direction of decreasing (increasing) gradient. A constant gradient does not, however, affect the known self-propulsion of the +1/2 defect and has no effect on the -1/2 that remains a non-motile particle. A sharp jump in activity acts like a wall that traps the defects, affecting the translational and rotational motion of both charges. The +1/2 defect slows down as it approaches the interface and the net vorticity tends to reorient the defect polarization so that it becomes perpendicular to the interface. The -1/2 defect acquires a self-propulsion towards the activity interface, while the vorticity-induced active torque tends to align the defect to a preferred orientation. This effective attraction of the negative defects to the wall is consistent with the observation of an accumulation of negative topological charge at both active/passive interfaces and physical boundaries.

9.
Biophys Rev (Melville) ; 4(2): 021303, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38510344

ABSTRACT

The integrity of epithelia is maintained within dynamic mechanical environments during tissue development and homeostasis. Understanding how epithelial cells mechanosignal and respond collectively or individually is critical to providing insight into developmental and (patho)physiological processes. Yet, inferring or mimicking mechanical forces and downstream mechanical signaling as they occur in epithelia presents unique challenges. A variety of in vitro approaches have been used to dissect the role of mechanics in regulating epithelia organization. Here, we review approaches and results from research into how epithelial cells communicate through mechanical cues to maintain tissue organization and integrity. We summarize the unique advantages and disadvantages of various reduced-order model systems to guide researchers in choosing appropriate experimental systems. These model systems include 3D, 2D, and 1D micromanipulation methods, single cell studies, and noninvasive force inference and measurement techniques. We also highlight a number of in silico biophysical models that are informed by in vitro and in vivo observations. Together, a combination of theoretical and experimental models will aid future experiment designs and provide predictive insight into mechanically driven behaviors of epithelial dynamics.

10.
Phys Rev E ; 106(5-1): 054610, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36559507

ABSTRACT

We study the dynamics of active nematic films on a substrate driven by active flows with or without the incompressible constraint. Through simulations and theoretical analysis, we show that arch patterns are stable in the compressible case, while they become unstable under the incompressibility constraint. For compressible flows at high enough activity, stable arches organize themselves into a smecticlike pattern, which induce an associated global polar ordering of +1/2 nematic defects. By contrast, divergence-free flows give rise to a local nematic order of the +1/2 defects, consisting of antialigned pairs of neighboring defects, as established in previous studies.

11.
Phys Rev Lett ; 129(14): 148101, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36240394

ABSTRACT

The rheology of biological tissue plays an important role in many processes, from organ formation to cancer invasion. Here, we use a multiphase field model of motile cells to simulate active microrheology within a tissue monolayer. When unperturbed, the tissue exhibits a transition between a solidlike state and a fluidlike state tuned by cell motility and deformability-the ratio of the energetic costs of steric cell-cell repulsion and cell-edge tension. When perturbed, solid tissues exhibit local yield-stress behavior, with a threshold force for the onset of motion of a probe particle that vanishes upon approaching the solid-to-liquid transition. This onset of motion is qualitatively different in the low and high deformability regimes. At high deformability, the tissue is amorphous when solid, it responds compliantly to deformations, and the probe transition to motion is smooth. At low deformability, the monolayer is more ordered translationally and stiffer, and the onset of motion appears discontinuous. Our results suggest that cellular or nanoparticle transport in different types of tissues can be fundamentally different and point to ways in which it can be controlled.


Subject(s)
Rheology , Cell Movement , Motion , Rheology/methods
12.
Science ; 377(6607): 768-772, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35951710

ABSTRACT

Controlling interfaces of phase-separating fluid mixtures is key to the creation of diverse functional soft materials. Traditionally, this is accomplished with surface-modifying chemical agents. Using experiment and theory, we studied how mechanical activity shapes soft interfaces that separate an active and a passive fluid. Chaotic flows in the active fluid give rise to giant interfacial fluctuations and noninertial propagating active waves. At high activities, stresses disrupt interface continuity and drive droplet generation, producing an emulsion-like active state composed of finite-sized droplets. When in contact with a solid boundary, active interfaces exhibit nonequilibrium wetting transitions, in which the fluid climbs the wall against gravity. These results demonstrate the promise of mechanically driven interfaces for creating a new class of soft active matter.

13.
Phys Rev E ; 105(6-1): 064611, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35854605

ABSTRACT

Vertex models, such as those used to describe cellular tissue, have an energy controlled by deviations of each cell area and perimeter from target values. The constrained nonlinear relation between area and perimeter leads to new mechanical response. Here we provide a mean-field treatment of a highly simplified model: a uniform network of regular polygons with no topological rearrangements. Since all polygons deform in the same way, we only need to analyze the ground states and the response to deformations of a single polygon (cell). The model exhibits the known transition between a fluid/compatible state, where the cell can accommodate both target area and perimeter, and a rigid/incompatible state. We calculate and measure the mechanical resistance to various deformation protocols and discover that at the onset of rigidity, where a single zero-energy ground state exists, linear elasticity fails to describe the mechanical response to even infinitesimal deformations. In particular, we identify a breakdown of reciprocity expressed via different moduli for compressive and tensile loads, implying nonanalyticity of the energy functional. We give a pictorial representation in configuration space that reveals that the complex elastic response of the vertex model arises from the presence of two distinct sets of reference states (associated with target area and target perimeter). Our results on the critically compatible tissue provide a new route for the design of mechanical metamaterials that violate or extend classical elasticity.

14.
Phys Rev Lett ; 128(17): 178001, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35570431

ABSTRACT

Biological processes, from morphogenesis to tumor invasion, spontaneously generate shear stresses inside living tissue. The mechanisms that govern the transmission of mechanical forces in epithelia and the collective response of the tissue to bulk shear deformations remain, however, poorly understood. Using a minimal cell-based computational model, we investigate the constitutive relation of confluent tissues under simple shear deformation. We show that an initially undeformed fluidlike tissue acquires finite rigidity above a critical applied strain. This is akin to the shear-driven rigidity observed in other soft matter systems. Interestingly, shear-driven rigidity can be understood by a critical scaling analysis in the vicinity of the second order critical point that governs the liquid-solid transition of the undeformed system. We further show that a solidlike tissue responds linearly only to small strains and but then switches to a nonlinear response at larger stains, with substantial stiffening. Finally, we propose a mean-field formulation for cells under shear that offers a simple physical explanation of shear-driven rigidity and nonlinear response in a tissue.


Subject(s)
Elasticity , Epithelium , Stress, Mechanical
15.
Phys Rev Lett ; 129(26): 268002, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36608178

ABSTRACT

We use a continuum model to examine the effect of activity on a phase-separating mixture of an extensile active nematic and a passive fluid. We highlight the distinct role of (i) previously considered interfacial active stresses and (ii) bulk active stresses that couple to liquid crystalline degrees of freedom. Interfacial active stresses can arrest phase separation, as previously demonstrated. Bulk extensile active stresses can additionally strongly suppress phase separation by sustained self-stirring of the fluid, substantially reducing the size of the coexistence region in the temperature-concentration plane relative to that of the passive system. The phase-separated state is a dynamical emulsion of continuously splitting and merging droplets, as suggested by recent experiments. Using scaling analysis and simulations, we identify various regimes for the dependence of droplet size on activity. These results can provide a criterion for identifying the mechanisms responsible for arresting phase separation in experiments.


Subject(s)
Liquid Crystals , Emulsions/chemistry , Liquid Crystals/chemistry
16.
Phys Rev E ; 104(4-1): 044606, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34781522

ABSTRACT

Experimental evidence shows that there is a feedback between cell shape and cell motion. How this feedback impacts the collective behavior of dense cell monolayers remains an open question. We investigate the effect of a feedback that tends to align the cell crawling direction with cell elongation in a biological tissue model. We find that the alignment interaction promotes nematic patterns in the fluid phase that eventually undergo a nonequilibrium phase transition into a quasihexagonal solid. Meanwhile, highly asymmetric cells do not undergo the liquid-to-solid transition for any value of the alignment coupling. In this regime, the dynamics of cell centers and shape fluctuation show features typical of glassy systems.


Subject(s)
Mass Gatherings , Models, Biological , Cell Shape , Phase Transition
17.
Phys Rev E ; 103(3-1): 032612, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33862788

ABSTRACT

Using the Poisson-bracket method, we derive continuum equations for a fluid of deformable particles in two dimensions. Particle shape is quantified in terms of two continuum fields: an anisotropy density field that captures the deformations of individual particles from regular shapes and a shape tensor density field that quantifies both particle elongation and nematic alignment of elongated shapes. We explicitly consider the example of a dense biological tissue as described by the Vertex model energy, where cell shape has been proposed as a structural order parameter for a liquid-solid transition. The hydrodynamic model of biological tissue proposed here captures the coupling of cell shape to flow and provides a starting point for modeling the rheology of dense tissue.

18.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33658364

ABSTRACT

In equilibrium, disorder conspires with topological defects to redefine the ordered states of matter in systems as diverse as crystals, superconductors, and liquid crystals. Far from equilibrium, however, the consequences of quenched disorder on active condensed matter remain virtually uncharted. Here, we reveal a state of strongly disordered active matter with no counterparts in equilibrium: a dynamical vortex glass. Combining microfluidic experiments and theory, we show how colloidal flocks collectively cruise through disordered environments without relaxing the topological singularities of their flows. The resulting state is highly dynamical but the flow patterns, shaped by a finite density of frozen vortices, are stationary and exponentially degenerated. Quenched isotropic disorder acts as a random gauge field turning active liquids into dynamical vortex glasses. We argue that this robust mechanism should shape the collective dynamics of a broad class of disordered active matter, from synthetic active nematics to collections of living cells exploring heterogeneous media.

19.
Soft Matter ; 17(11): 3068-3073, 2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33596291

ABSTRACT

Recent experiments in various cell types have shown that two-dimensional tissues often display local nematic order, with evidence of extensile stresses manifest in the dynamics of topological defects. Using a mesoscopic model where tissue flow is generated by fluctuating traction forces coupled to the nematic order parameter, we show that the resulting tissue dynamics can spontaneously produce local nematic order and an extensile internal stress. A key element of the model is the assumption that in the presence of local nematic alignment, cells preferentially crawl along the nematic axis, resulting in anisotropy of fluctuations. Our work shows that activity can drive either extensile or contractile stresses in tissue, depending on the relative strength of the contractility of the cortical cytoskeleton and tractions by cells on the extracellular matrix.


Subject(s)
Cytoskeleton , Extracellular Matrix , Anisotropy
20.
Nature ; 590(7844): 80-84, 2021 02.
Article in English | MEDLINE | ID: mdl-33536650

ABSTRACT

Active matter consists of units that generate mechanical work by consuming energy1. Examples include living systems (such as assemblies of bacteria2-5 and biological tissues6,7), biopolymers driven by molecular motors8-11 and suspensions of synthetic self-propelled particles12-14. A central goal is to understand and control the self-organization of active assemblies in space and time. Most active systems exhibit either spatial order mediated by interactions that coordinate the spatial structure and the motion of active agents12,14,15 or the temporal synchronization of individual oscillatory dynamics2. The simultaneous control of spatial and temporal organization is more challenging and generally requires complex interactions, such as reaction-diffusion hierarchies16 or genetically engineered cellular circuits2. Here we report a simple technique to simultaneously control the spatial and temporal self-organization of bacterial active matter. We confine dense active suspensions of Escherichia coli cells and manipulate a single macroscopic parameter-namely, the viscoelasticity of the suspending fluid- through the addition of purified genomic DNA. This reveals self-driven spatial and temporal organization in the form of a millimetre-scale rotating vortex with periodically oscillating global chirality of tunable frequency, reminiscent of a torsional pendulum. By combining experiments with an active-matter model, we explain this behaviour in terms of the interplay between active forcing and viscoelastic stress relaxation. Our findings provide insight into the influence of bacterial motile behaviour in complex fluids, which may be of interest in health- and ecology-related research, and demonstrate experimentally that rheological properties can be harnessed to control active-matter flows17,18. We envisage that our millimetre-scale, tunable, self-oscillating bacterial vortex may be coupled to actuation systems to act a 'clock generator' capable of providing timing signals for rhythmic locomotion of soft robots and for programmed microfluidic pumping19, for example, by triggering the action of a shift register in soft-robotic logic devices20.


Subject(s)
Escherichia coli/physiology , Rheology , Spatio-Temporal Analysis , Viscoelastic Substances/chemistry , Viscoelastic Substances/metabolism , DNA, Bacterial/analysis , DNA, Bacterial/chemistry , Diffusion , Escherichia coli/cytology , Escherichia coli/isolation & purification , Microfluidics , Molecular Weight , Movement , Robotics , Suspensions
SELECTION OF CITATIONS
SEARCH DETAIL