Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
PNAS Nexus ; 3(1): pgad439, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38178977

ABSTRACT

Parkinson's disease (PD) associated state of neuroinflammation due to the aggregation of aberrant proteins is widely reported. One type of post-translational modification involved in protein stability is glycosylation. Here, we aimed to characterize the human Parkinsonian nigro-striatal N-glycome, and related transcriptome/proteome, and its correlation with endoplasmic reticulum (ER) stress and unfolded protein response (UPR), providing a comprehensive characterization of the PD molecular signature. Significant changes were seen upon a PD: a 3% increase in sialylation and 5% increase in fucosylation in both regions, and a 2% increase in oligomannosylated N-glycans in the substantia nigra. In the latter, a decrease in the mRNA expression of sialidases and an upregulation in the UPR pathway were also seen. To show the correlation between these, we also describe a small in vitro study where changes in specific glycosylation trait enzymes (inhibition of sialyltransferases) led to impairments in cell mitochondrial activity, changes in glyco-profile, and upregulation in UPR pathways. This complete characterization of the human nigro-striatal N-glycome provides an insight into the glycomic profile of PD through a transversal approach while combining the other PD "omics" pieces, which can potentially assist in the development of glyco-focused therapeutics.

2.
Sci Rep ; 13(1): 19976, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37968441

ABSTRACT

Mycoparasitism is a key feature of Trichoderma (Hypocreales, Ascomycota) biocontrol agents. Recent studies of intracellular signal transduction pathways of the potent mycoparasite Trichoderma atroviride revealed the involvement of Tmk1, a mitogen-activated protein kinase (MAPK), in triggering the mycoparasitic response. We previously showed that mutants missing Tmk1 exhibit reduced mycoparasitic activity against several plant pathogenic fungi. In this study, we identified the most robustly regulated targets that were governed by Tmk1 during mycoparasitism using transcriptome and proteome profiling. Tmk1 mainly exerts a stimulating function for T. atroviride during its mycoparasitic interaction with the fungal plant pathogen Rhizoctonia solani, as reflected by 89% of strongly differently responding genes in the ∆tmk1 mutant compared to the wild type. Specifically, 54% of these genes showed strong downregulation in the response with a deletion of the tmk1 gene, whereas in the wild type the same genes were strongly upregulated during the interaction with the fungal host. These included the gene encoding the mycoparasitism-related proteinase Prb1; genes involved in signal transduction pathways such as a candidate coding for a conserved 14-3-3 protein, and a gene coding for Tmk2, the T. atroviride cell-wall integrity MAP kinase; genes encoding a specific siderophore synthetase, and multiple FAD-dependent oxidoreductases and aminotransferases. Due to the phosphorylating activity of Tmk1, different (phospho-)proteomics approaches were applied and identified proteins associated with cellular metabolism, energy production, protein synthesis and fate, and cell organization. Members of FAD- and NAD/NADP-binding-domain proteins, vesicular trafficking of molecules between cellular organelles, fungal translational, as well as protein folding apparatus were among others found to be phosphorylated by Tmk1 during mycoparasitism. Outstanding downregulation in the response of the ∆tmk1 mutant to the fungal host compared to the wild type at both the transcriptome and the proteome levels was observed for nitrilase, indicating that its defense and detoxification functions might be greatly dependent on Tmk1 during T. atroviride mycoparasitism. An intersection network analysis between the identified transcripts and proteins revealed a strong involvement of Tmk1 in molecular functions with GTPase and oxidoreductase activity. These data suggest that during T. atroviride mycoparasitism this MAPK mainly governs processes regulating cell responses to extracellular signals and those involved in reactive oxygen stress.


Subject(s)
Hypocreales , Trichoderma , Proteome/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , Hypocreales/metabolism , Trichoderma/metabolism , Gene Expression Regulation, Fungal
3.
J Fungi (Basel) ; 9(8)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37623556

ABSTRACT

Many studies aim at maximizing fungal secondary metabolite production but the influence of light during cultivation has often been neglected. Here, we combined an untargeted isotope-assisted liquid chromatography-high-resolution mass spectrometry-based metabolomics approach with standardized cultivation of Trichoderma atroviride under three defined light regimes (darkness (PD), reduced light (RL) exposure, and 12/12 h light/dark cycle (LD)) to systematically determine the effect of light on secondary metabolite production. Comparative analyses revealed a similar metabolite profile upon cultivation in PD and RL, whereas LD treatment had an inhibiting effect on both the number and abundance of metabolites. Additionally, the spatial distribution of the detected metabolites for PD and RL was analyzed. From the more than 500 detected metabolites, only 25 were exclusively produced upon fungal growth in darkness and 85 were significantly more abundant in darkness. The majority were detected under both cultivation conditions and annotation revealed a cluster of substances whose production followed the pattern observed for the well-known T. atroviride metabolite 6-pentyl-alpha-pyrone. We conclude that cultivation of T. atroviride under RL can be used to maximize secondary metabolite production.

4.
J Mech Behav Biomed Mater ; 145: 105991, 2023 09.
Article in English | MEDLINE | ID: mdl-37480709

ABSTRACT

Collagen fibrils are the basic structural building blocks that provide mechanical properties such as stiffness, toughness, and strength to tissues from the nano- to the macroscale. Collagen fibrils are highly hydrated and transient deformation mechanisms contribute to their mechanical behavior. One approach to describe and quantify the apparent viscoelastic behavior of collagen fibrils is to find rheological models and fit the resulting empirical equations to experimental data. In this study, we consider a nonlinear rheological Maxwell model for this purpose. The model was fitted to tensile stress-time data from experiments conducted in a previous study on hydrated and partially dehydrated individual collagen fibrils via AFM. The derivative tensile modulus, estimated from the empirical equation, increased for decreasing hydration of the collagen fibril. The viscosity is only marginally affected by hydration but shows a dependency with strain rate, suggesting thixotropic behavior for low strain rates.


Subject(s)
Collagen , Stress, Mechanical , Biomechanical Phenomena , Viscosity , Tensile Strength
5.
Molecules ; 28(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37375138

ABSTRACT

From the moment of production, artworks are constantly exposed to changing environmental factors potentially inducing degradation. Therefore, detailed knowledge of natural degradation phenomena is essential for proper damage assessment and preservation. With special focus on written cultural heritage, we present a study on the degradation of sheep parchment employing accelerated aging with light (295-3000 nm) for one month, 30/50/80% relative humidity (RH) and 50 ppm sulfur dioxide with 30/50/80%RH for one week. UV/VIS spectroscopy detected changes in the sample surface appearance, showing browning after light-aging and increased brightness after SO2-aging. Band deconvolution of ATR/FTIR and Raman spectra and factor analysis of mixed data (FAMD) revealed characteristic changes of the main parchment components. Spectral features for degradation-induced structural changes of collagen and lipids turned out to be different for the employed aging parameters. All aging conditions induced denaturation (of different degrees) indicated by changes in the secondary structure of collagen. Light treatment resulted in the most pronounced changes for collagen fibrils in addition to backbone cleavage and side chain oxidations. Additional increased disorder for lipids was observed. Despite shorter exposure times, SO2-aging led to a weakening of protein structures induced by transitions of stabilizing disulfide bonds and side chain oxidations.

6.
Viruses ; 15(6)2023 06 13.
Article in English | MEDLINE | ID: mdl-37376661

ABSTRACT

Gas-phase electrophoresis on a nano-Electrospray Gas-phase Electrophoretic Mobility Molecular Analyzer (nES GEMMA) separates single-charged, native analytes according to the surface-dry particle size. A volatile electrolyte, often ammonium acetate, is a prerequisite for electrospraying. Over the years, nES GEMMA has demonstrated its unique capability to investigate (bio-)nanoparticle containing samples in respect to composition, analyte size, size distribution, and particle numbers. Virus-like particles (VLPs), being non-infectious vectors, are often employed for gene therapy applications. Focusing on adeno-associated virus 8 (AAV8) based VLPs, we investigated the response of these bionanoparticles to pH changes via nES GEMMA as ammonium acetate is known to exhibit these changes upon electrospraying. Indeed, slight yet significant differences in VLP diameters in relation to pH changes are found between empty and DNA-cargo-filled assemblies. Additionally, filled VLPs exhibit aggregation in dependence on the applied electrolyte's pH, as corroborated by atomic force microscopy. In contrast, cryogenic transmission electron microscopy did not relate to changes in the overall particle size but in the substantial particle's shape based on cargo conditions. Overall, we conclude that for VLP characterization, the pH of the applied electrolyte solution has to be closely monitored, as variations in pH might account for drastic changes in particles and VLP behavior. Likewise, extrapolation of VLP behavior from empty to filled particles has to be carried out with caution.


Subject(s)
Dependovirus , Dependovirus/genetics , Electrophoresis/methods , Microscopy, Atomic Force , Hydrogen-Ion Concentration
7.
Talanta ; 256: 124305, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36736271

ABSTRACT

In the last years, LA-ICP-MS has become an attractive technique for analyzing solid samples from various research fields. However, application in material science is often hampered by the limited availability of appropriate certified reference materials, which are a precondition for accurate quantification. Thus, frequently in-house prepared standards are used, which match the sample's composition and include all elements of interest at the required concentration levels. However, preparing and characterizing such standards is often labor-intensive and time-consuming. This work proposes a new approach for the fabrication of matrix-matched standards based on the concept of standard addition. In the first step, the analytes of interest are homogeneously deposited onto the sample surface using liquid standards and a spraying device. For analysis, the generated thin layer is ablated simultaneously with the underlying sample. Thereby deviations in the ablation process and particle transport can be avoided. It could be shown that the developed method is highly versatile and could be easily adapted to the actual needs. Using silicon, silicon carbide, copper, aluminum, and glass as a matrix, excellent linear correlations between observed signal intensities and deposited amounts were found for the elements Zn, Ag, In, and Pb (R2 - values greater than 0.99). The method was applied to determine the content of sulfur, zinc, silver, indium, and lead in a commercial Kapton® polyimide film. The obtained results could be verified based on the homogeneously distributed sulfur by conventional liquid ICP-MS analysis after sample digestion, showing similar precision and accuracy. Lead was found to show a very inhomogeneous distribution in the Kapton® film, with concentration below the LOD at most measured locations and irregularly occurring spots with significantly higher concentrations. Finally, a quantitative depth profile of sulfur in a Kapton® film has been measured to assess the uptake of SO2 after a weathering experiment.

8.
Membranes (Basel) ; 12(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36135891

ABSTRACT

Extracellular vesicles (EVs) are in the scientific spotlight due to their potential application in the medical field, ranging from medical diagnosis to therapy. These applications rely on EV stability during isolation and purification-ideally, these steps should not impact vesicle integrity. In this context, we investigated EV stability and particle numbers via nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA) and nanoparticle tracking analysis (NTA). In nES GEMMA, native, surface-dry analytes are separated in the gas-phase according to the particle size. Besides information on size and particle heterogeneity, particle number concentrations are obtained in accordance with recommendations of the European Commission for nanoparticle characterization (2011/696/EU, 18 October 2011). Likewise, and in contrast to NTA, nES GEMMA enables detection of co-purified proteins. On the other hand, NTA, yielding data on hydrodynamic size distributions, is able to relate particle concentrations, omitting electrolyte exchange (and resulting EV loss), which is prerequisite for nES GEMMA. Focusing on EVs of different origin, we compared vesicles concentrations and stability, especially after electrolyte exchange and size exclusion chromatography (SEC). Co-isolated proteins were detected in most samples, and the vesicle amount varied in dependence on the EV source. We found that depletion of co-purified proteins was achievable via SEC, but was associated with a loss of EVs and-most importantly-with decreased vesicle stability, as detected via a reduced nES GEMMA measurement repeatability. Ultimately, we propose the repeatability of nES GEMMA to yield information on EV stability, and, as a result, we propose that nES GEMMA can yield additional valuable information in EV research.

9.
Sci Justice ; 62(4): 433-447, 2022 07.
Article in English | MEDLINE | ID: mdl-35931449

ABSTRACT

The forensic scenario, on which the round robin study was based, simulated a suspected intentional manipulation of a real estate rental agreement consisting of a total of three pages. The aims of this study were to (i) establish the amount and reliability of information extractable from a single type of evidence and to (ii) provide suggestions on the most suitable combination of compatible techniques for a multi-modal imaging approach to forgery detection. To address these aims, seventeen laboratories from sixteen countries were invited to answer the following tasks questions: (i) which printing technique was used? (ii) were the three pages printed with the same printer? (iii) were the three pages made from the same paper? (iv) were the three pages originally stapled? (v) were the headings and signatures written with the same ink? and (vi) were headings and signatures of the same age on all pages? The methods used were classified into the following categories: Optical spectroscopy, including multispectral imaging, smartphone mapping, UV-luminescence and LIBS; Infrared spectroscopy, including Raman and FTIR (micro-)spectroscopy; X-ray spectroscopy, including SEM-EDX, PIXE and XPS; Mass spectrometry, including ICPMS, SIMS, MALDI and LDIMS; Electrostatic imaging, as well as non-imaging methods, such as non-multimodal visual inspection, (micro-)spectroscopy, physical testing and thin layer chromatography. The performance of the techniques was evaluated as the proportion of discriminated sample pairs to all possible sample pairs. For the undiscriminated sample pairs, a distinction was made between undecidability and false positive claims. It was found that none of the methods used were able to solve all tasks completely and/or correctly and that certain methods were a priori judged unsuitable by the laboratories for some tasks. Correct results were generally achieved for the discrimination of printer toners, whereas incorrect results in the discrimination of inks. For the discrimination of paper, solid state analytical methods proved to be superior to mass spectrometric methods. None of the participating laboratories deemed addressing ink age feasible. It was concluded that correct forensic statements can only be achieved by the complementary application of different methods and that the classical approach of round robin studies to send standardised subsamples to the participants is not feasible for a true multimodal approach if the techniques are not available at one location.


Subject(s)
Forensic Medicine , Ink , Forensic Medicine/methods , Humans , Laboratories , Mass Spectrometry , Reproducibility of Results
10.
Toxins (Basel) ; 14(7)2022 06 24.
Article in English | MEDLINE | ID: mdl-35878170

ABSTRACT

Ochratoxin A (OTA) is one of the major mycotoxins causing severe effects on the health of humans and animals. Ochratoxin alpha (OTα) is a metabolite of OTA, which is produced through microbial or enzymatic hydrolysis, and one of the preferred routes of OTA detoxification. The methods described here are applicable for the extraction and quantification of OTA and OTα in several pig and poultry matrices such as feed, feces/excreta, urine, plasma, dried blood spots, and tissue samples such as liver, kidney, muscle, skin, and fat. The samples are homogenized and extracted. Extraction is either based on a stepwise extraction using ethyl acetate/sodium hydrogencarbonate/ethyl acetate or an acetonitrile/water mixture. Quantitative analysis is based on reversed-phase liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Method validation was successfully performed and the linearity, limit of quantification, accuracy, precision as well as the stability of the samples, were evaluated. The analyte recovery of the spiked samples was between 80 and 120% (80-150% for spiked concentrations ≤ 1 ng/g or ng/mL) and the relative standard deviation was ≤ 15%. Therefore, we provide a toolbox for the extraction and quantification of OTA and OTα in all relevant pig and poultry matrices.


Subject(s)
Mycotoxins , Ochratoxins , Animals , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Humans , Mycotoxins/analysis , Ochratoxins/analysis , Poultry/metabolism , Swine , Tandem Mass Spectrometry/methods
11.
Anal Bioanal Chem ; 414(25): 7531-7542, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35551432

ABSTRACT

The properties of biogenic aerosol strongly depend on the particle's proteinaceous compounds. Proteins from primary biological aerosol particles (PBAPs) can cause allergic reactions in the human respiratory system or act as ice and condensation nuclei in clouds. Consequently, these particles have high impact on human health and climate. The detection of biogenic aerosol is commonly performed with fluorescence-based techniques. However, many PBAPs (i.e., pollen of birch, mugwort, or ragweed) show weak or rather low fluorescence signals in the particular protein region (λex ~ 255-280 nm, λem ~ 280-350 nm). We hypothesize that the fluorescence signal of proteins present in birch pollen is being distorted within its native matrix. In this study, we conducted in vitro quenching experiments and employed UV/Vis spectroscopy, capillary zone electrophoresis (CZE), liquid chromatography (LC), electrospray ionization mass spectrometry (ESI-MS), and multistage MS (MS2 and MS3) to target major components in birch pollen washing water (BPWW) possibly quenching the fluorescence activity of proteins and thus explaining the lack of corresponding protein fluorescent signals. We identified quercetin-3-O-sophoroside (Q3OS, MW 626 g mol-1) to be the main UV/Vis absorbing component in BPWW. Our results point out that Q3OS suppresses the fluorescence of proteins in our samples predominantly due to inner filter effects. In general, when applying fluorescence spectroscopy to analyze and detect PBAPs in the laboratory or the atmosphere, it is important to critically scrutinize the obtained spectra.


Subject(s)
Allergens , Betula , Allergens/analysis , Betula/chemistry , Humans , Ice/analysis , Pollen/chemistry , Quercetin/analogs & derivatives
12.
Anal Chem ; 94(26): 9316-9326, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35604839

ABSTRACT

MALDI mass spectrometry imaging (MALDI MSI) is a powerful analytical method for achieving 2D localization of compounds from thin sections of typically but not exclusively biological samples. The dynamically harmonized ICR cell (ParaCell) was recently introduced to achieve extreme spectral resolution capable of providing the isotopic fine structure of ions detected in complex samples. The latest improvement in the ICR technology also includes 2ω detection, which significantly reduces the transient time while preserving the nominal mass resolving power of the ICR cell. High-resolution MS images acquired on FT-ICR instruments equipped with 7T and 9.4T superconducting magnets and the dynamically harmonized ICR cell operating at suboptimal parameters suffered severely from the pixel-to-pixel shifting of m/z peaks due to space-charge effects. The resulting profile average mass spectra have depreciated mass measurement accuracy and mass resolving power under the instrument specifications that affect the confidence level of the identified ions. Here, we propose an analytical workflow based on the monitoring of the total ion current to restrain the pixel-to-pixel m/z shift. Adjustment of the laser parameters is proposed to maintain high spectral resolution and mass accuracy measurement within the instrument specifications during MSI analyses. The optimized method has been successfully employed in replicates to perform high-quality MALDI MS images at resolving power (FWHM) above 1,000,000 in the lipid mass range across the whole image for superconducting magnets of 7T and 9.4T using 1 and 2ω detection. Our data also compare favorably with MALDI MSI experiments performed on higher-magnetic-field superconducting magnets, including the 21T MALDI FT-ICR prototype instrument of the NHMFL group at Tallahassee, Florida.


Subject(s)
Cyclotrons , Diagnostic Imaging , Fourier Analysis , Ions , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
13.
Anal Chim Acta ; 1195: 339422, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35090647

ABSTRACT

The growing importance of fluoropolymers in high-tech applications and green technologies results in the rising need for their characterization. In contrast to conventional methods used for this task, laser-induced breakdown spectroscopy (LIBS) provides the advantage of a spatially resolved analysis. Nevertheless, the high excitation energy of fluorine results in low sensitivity of the atomic F(I) lines, which limits the feasibility of its LIBS-based analysis. This work presents a novel approach for quantitative mapping of fluorine in fluoropolymer samples. It bases on monitoring of molecular emission bands (CuF or CaF) arising from fluorine containing molecules. These species were generated during later stages of the LIBS plasma by a recombination of fluorine atoms originating from fluoropolymer sample with a molecule-forming partner (Cu or Ca) stemming from a surface coating. This approach enables F detection limits in the parts per million (µg g-1) range and elemental imaging using single shot measurements. The elements required for molecular formation are deposited on the sample surface prior to analysis. We evaluate two techniques - spray coating and sputter coating - with regards to their effects on sensitivity and spatial resolution in elemental mapping. Overall, both methods proved to be suitable for a spatially resolved analysis of fluorine: whereas sputter-coating of copper yielded a better sensitivity, spray coating of calcium provided a higher spatial resolution.


Subject(s)
Fluorine , Lasers , Calcium , Fluorides , Spectrum Analysis
14.
Autophagy ; 18(5): 1005-1019, 2022 05.
Article in English | MEDLINE | ID: mdl-34491140

ABSTRACT

ABBREVIATIONS: ATG7: autophagy related 7; BODIPY: boron dipyrromethene; DAG: diacyl glycerides; DBI: diazepam binding inhibitor; GFP: green fluorescent protein; KRT14: keratin 14; HPLC-MS: high performance liquid chromatography-mass spectrometry; LD: lipid droplet; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MSI: mass spectrometric imaging; ORO: Oil Red O; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PG: preputial gland; PLIN2: perilipin 2; PtdIns: phosphatidylinositol; PL: phospholipids; POPC: 1-palmitoyl-2-oleoyl-PC; PS: phosphatidylserine; qRT-PCR: quantitative reverse transcribed PCR; SG: sebaceous gland; scRNAseq: single-cell RNA sequencing; TAG: triacylglycerides; TLC: thin layer chromatography.


Subject(s)
Aging, Premature , Sebum , Animals , Autophagy/genetics , Mice , Perilipin-2 , Pheromones , Phosphatidylserines , Phospholipids
15.
J Invest Dermatol ; 142(1): 4-11.e1, 2022 01.
Article in English | MEDLINE | ID: mdl-34924150

ABSTRACT

Although lipids are crucial molecules for cell structure, metabolism, and signaling in most organs, they have additional specific functions in the skin. Lipids are required for the maintenance and regulation of the epidermal barrier, physical properties of the skin, and defense against microbes. Analysis of the lipidome-the totality of lipids-is of similar complexity to those of proteomics or other omics, with lipid structures ranging from simple, linear, to highly complex structures. In addition, the ordering and chemical modifications of lipids have consequences on their biological function, especially in the skin. Recent advances in analytic capability (usually with mass spectrometry), bioinformatic processing, and integration with other dermatological big data have allowed researchers to increasingly understand the roles of specific lipid species in skin biology. In this paper, we review the techniques used to analyze skin lipidomics and epilipidomics.


Subject(s)
Lipidomics/methods , Skin/metabolism , Animals , Big Data , Biomedical Research , Computational Biology , Epigenesis, Genetic , Humans , Lipid Metabolism , Mass Spectrometry , Skin/pathology
16.
Article in English | MEDLINE | ID: mdl-34543886

ABSTRACT

Due to the fast growing importance of monoclonal antibodies in biomedical research, bioanalytics and human therapy, sensitive, fast and reliable methods are needed to monitor their production, target their characteristics, and for their final quality control. Application of a nano electrospray (nES) with soft X-ray radiation (SXR) based charge reduction and differential mobility analysis (DMA, aka nano electrospray gas-phase electrophoretic mobility molecular analysis, nES GEMMA) allows the size-separation and detection of macromolecules and (bio-)nanoparticles from a few nm up to several hundreds of nm in diameter in a native-like environment. The current study focuses on the analysis of a 148 kDa recombinant monoclonal antibody (rmAb) with the above mentioned instrumental setup and applying an universal detector, i.e. a water-based condensation particle detector (CPC). Next to the intact rmAb, its aggregates and fragment products after digestion with IdeS protease were analyzed. Additionally, influence of temperature treatment and pH variation on the stability of the rmAb was monitored. In this context, changes in electrophoretic mobility diameter (EMD) values, peak shape, and signal intensity based on particle numbers were of interest. Molecular weights calculated by application of a correlation derived from respective standard protein compounds were compared to mass spectrometric values and were found to be in good accordance. To conclude, we demonstrate that nES-DMA is a valuable tool in the characterization and quality control of rmABs.


Subject(s)
Antibodies, Monoclonal , Electrophoresis/methods , Ion Mobility Spectrometry/methods , Nanoparticles/chemistry , Recombinant Proteins , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/chemistry , Particle Size , Recombinant Proteins/analysis , Recombinant Proteins/chemistry , X-Rays
17.
Microorganisms ; 9(6)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204563

ABSTRACT

Determining the mode of action of microbial biocontrol agents plays a key role in their development and registration as commercial biopesticides. The biocontrol rhizobacterium Lysobacter capsici AZ78 (AZ78) is able to inhibit a vast array of plant pathogenic oomycetes and Gram-positive bacteria due to the release of antimicrobial secondary metabolites. A combination of MALDI-qTOF-MSI and UHPLC-HRMS/M was applied to finely dissect the AZ78 metabolome and identify the main secondary metabolites involved in the inhibition of plant pathogenic microorganisms. Under nutritionally limited conditions, MALDI-qTOF-MSI revealed that AZ78 is able to release a relevant number of antimicrobial secondary metabolites belonging to the families of 2,5-diketopiperazines, cyclic lipodepsipeptides, macrolactones and macrolides. In vitro tests confirmed the presence of secondary metabolites toxic against Pythium ultimum and Rhodococcus fascians in AZ78 cell-free extracts. Subsequently, UHPLC-HRMS/MS was used to confirm the results achieved with MALDI-qTOF-MSI and investigate for further putative antimicrobial secondary metabolites known to be produced by Lysobacter spp. This technique confirmed the presence of several 2,5-diketopiperazines in AZ78 cell-free extracts and provided the first evidence of the production of the cyclic depsipeptide WAP-8294A2 in a member of L. capsici species. Moreover, UHPLC-HRMS/MS confirmed the presence of dihydromaltophilin/Heat Stable Antifungal Factor (HSAF) in AZ78 cell-free extracts. Due to the production of HSAF by AZ78, cell-free supernatants were effective in controlling Plasmopara viticola on grapevine leaf disks after exposure to high temperatures. Overall, our work determined the main secondary metabolites involved in the biocontrol activity of AZ78 against plant pathogenic oomycetes and Gram-positive bacteria. These results might be useful for the future development of this bacterial strain as the active ingredient of a microbial biopesticide that might contribute to a reduction in the chemical input in agriculture.

18.
Electrophoresis ; 42(11): 1202-1208, 2021 06.
Article in English | MEDLINE | ID: mdl-33651392

ABSTRACT

Gas-phase electrophoresis yields size distributions of polydisperse, aerosolized analytes based on electrophoretic principles. Nanometer-sized, surface-dry, single-charged particles are separated in a high laminar sheath flow of particle-free air and an orthogonal tunable electric field. Additionally, nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyzer (nES GEMMA) data are particle-number based. Therefore, small particles can be detected next to larger ones without a bias, for example, native proteins next to their aggregates. Analyte transition from the liquid to the gas phase is a method inherent prerequisite. In this context, nonvolatile sample buffers influence results. In the worst case, the (bio-)nanoparticle signal is lost due to an increased baseline and unspecific clustering of nonvolatile components. We present a novel online hyphenation of liquid chromatography and gas-phase electrophoresis, coupling a size-exclusion chromatography (SEC) column to an advanced nES GEMMA. Via this novel approach, it is possible to (i) separate analyte multimers already present in liquid phase from aggregates formed during the nES process, (ii) differentiate liquid phase and spray-induced multimers, and (iii) to remove nonvolatile buffer components online before SEC-nES GEMMA analysis. Due to these findings, SEC-nES GEMMA has the high potential to help to understand aggregation processes in biological buffers adding the benefit of actual size determination for noncovalent assemblies formed in solution. As detection and characterization of protein aggregation in large-scale pharmaceutical production or sizing of noncovalently bound proteins are findings directly related to technologically and biologically relevant situations, we proposed the presented method to be a valuable addition to LC-MS approaches.


Subject(s)
Chromatography, Gel , Electrophoresis , Protein Aggregates , Proteins
19.
Analyst ; 146(7): 2358-2367, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33625407

ABSTRACT

In this study, we have aimed at developing a novel electrochemical sensing approach capable of detecting dopamine, the main biomarker in Parkinson's disease, within the highly complex cell culture matrix of human midbrain organoids in a non-invasive and label-free manner. With its ability to generate organotypic structures in vitro, induced pluripotent stem cell technology has provided the basis for the development of advanced patient-derived disease models. These include models of the human midbrain, the affected region in the neurodegenerative disorder Parkinson's disease. Up to now, however, the analysis of so-called human midbrain organoids has relied on time-consuming and invasive strategies, incapable of monitoring organoid development. Using a redox-cycling approach in combination with a 3-mercaptopropionic acid self-assembled monolayer modification enabled the increase of sensor selectivity and sensitivity towards dopamine, while simultaneously reducing matrix-mediated interferences. In this work, we demonstrate the ability to detect and monitor even small differences in dopamine release between healthy and Parkinson`s disease-specific midbrain organoids over prolonged cultivation periods, which was additionally verified using liquid chromatography-multiple reaction monitoring mass spectrometry. Furthermore, the detection of a phenotypic rescue in midbrain organoids carrying a pathogenic mutation in leucine-rich repeat kinase 2, upon treatment with the leucine-rich repeat kinase 2 inhibitor II underlines the practical implementability of our sensing approach for drug screening applications as well as personalized disease modelling.


Subject(s)
Organoids , Parkinson Disease , Drug Evaluation, Preclinical , Humans , Mesencephalon , Neurotransmitter Agents , Organoids/metabolism , Oxidation-Reduction , Parkinson Disease/metabolism
20.
Anal Bioanal Chem ; 413(10): 2683-2694, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32930817

ABSTRACT

In the past decades, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has been applied to a broad range of biological samples, e.g., forensics and preclinical samples. The use of MALDI-MSI for the analysis of bone tissue has been limited due to the insulating properties of the material but more importantly the absence of a proper sample preparation protocol for undecalcified bone tissue. Undecalcified sections are preferred to retain sample integrity as much as possible or to study the tissue-bone bio interface in particular. Here, we optimized the sample preparation protocol of undecalcified bone samples, aimed at both targeted and untargeted applications for forensic and preclinical applications, respectively. Different concentrations of gelatin and carboxymethyl cellulose (CMC) were tested as embedding materials. The composition of 20% gelatin and 7.5% CMC showed to support the tissue best while sectioning. Bone tissue has to be sectioned with a tungsten carbide knife in a longitudinal fashion, while the sections need to be supported with double-sided tapes to maintain the morphology of the tissue. The developed sectioning method was shown to be applicable on rat and mouse as well as human bone samples. Targeted (methadone and EDDP) as well as untargeted (unknown lipids) detection was demonstrated. DHB proved to be the most suitable matrix for the detection of methadone and EDDP in positive ion mode. The limit of detection (LOD) is estimated to approximately 50 pg/spot on bone tissue. The protocol was successfully applied to detect the presence of methadone and EDDP in a dosed rat femur and a dosed human clavicle. The best matrices for the untargeted detection of unknown lipids in mouse hind legs in positive ion mode were CHCA and DHB based on the number of tissue-specific peaks and signal-to-noise ratios. The developed and optimized sample preparation method, applicable on animal and human bones, opens the door for future forensic and (pre)clinical investigations.


Subject(s)
Bone and Bones/chemistry , Lipids/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tissue Embedding/methods , Animals , Carboxymethylcellulose Sodium/chemistry , Forensic Medicine/methods , Gelatin/chemistry , Male , Microtomy/methods , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...