Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Med Chem ; 65(24): 16392-16419, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36450011

ABSTRACT

Metallo-ß-lactamases (MBLs) contribute to the resistance of Gram-negative bacteria to carbapenems, last-resort antibiotics at hospital, and MBL inhibitors are urgently needed to preserve these important antibacterial drugs. Here, we describe a series of 1,2,4-triazole-3-thione-based inhibitors displaying an α-amino acid substituent, which amine was mono- or disubstituted by (hetero)aryl groups. Compounds disubstituted by certain nitrogen-containing heterocycles showed submicromolar activities against VIM-type enzymes and strong NDM-1 inhibition (Ki = 10-30 nM). Equilibrium dialysis, native mass spectrometry, isothermal calorimetry (ITC), and X-ray crystallography showed that the compounds inhibited both VIM-2 and NDM-1 at least partially by stripping the catalytic zinc ions. These inhibitors also displayed a very potent synergistic activity with meropenem (16- to 1000-fold minimum inhibitory concentration (MIC) reduction) against VIM-type- and NDM-1-producing ultraresistant clinical isolates, including Enterobacterales and Pseudomonas aeruginosa. Furthermore, selected compounds exhibited no or moderate toxicity toward HeLa cells, favorable absorption, distribution, metabolism, excretion (ADME) properties, and no or modest inhibition of several mammalian metalloenzymes.


Subject(s)
Thiones , beta-Lactamase Inhibitors , Humans , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/chemistry , Thiones/pharmacology , HeLa Cells , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , beta-Lactamases/metabolism , Microbial Sensitivity Tests
2.
J Med Chem ; 63(24): 15802-15820, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33306385

ABSTRACT

The diazabicyclooctanes (DBOs) are a class of serine ß-lactamase (SBL) inhibitors that use a strained urea moiety as the warhead to react with the active serine residue in the active site of SBLs. The first in-class drug, avibactam, as well as several other recently approved DBOs (e.g., relebactam) or those in clinical development (e.g., nacubactam and zidebactam) potentiate activity of ß-lactam antibiotics, to various extents, against carbapenem-resistant Enterobacterales (CRE) carrying class A, C, and D SBLs; however, none of these are able to rescue the activity of ß-lactam antibiotics against carbapenem-resistant Acinetobacter baumannii (CRAB), a WHO "critical priority pathogen" producing class D OXA-type SBLs. Herein, we describe the chemical optimization and resulting structure-activity relationship, leading to the discovery of a novel DBO, ANT3310, which uniquely has a fluorine atom replacing the carboxamide and stands apart from the current DBOs in restoring carbapenem activity against OXA-CRAB as well as SBL-carrying CRE pathogens.


Subject(s)
Acinetobacter/drug effects , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/drug effects , Octanes/chemistry , beta-Lactamases/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Binding Sites , Carbapenems/pharmacology , Drug Evaluation, Preclinical , Drug Resistance, Bacterial/drug effects , Half-Life , Mice , Microbial Sensitivity Tests , Molecular Docking Simulation , Octanes/metabolism , Octanes/pharmacology , Stereoisomerism , Structure-Activity Relationship , beta-Lactamase Inhibitors/chemistry , beta-Lactamase Inhibitors/metabolism , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism
3.
ACS Infect Dis ; 6(9): 2419-2430, 2020 09 11.
Article in English | MEDLINE | ID: mdl-32786279

ABSTRACT

The clinical effectiveness of the important ß-lactam class of antibiotics is under threat by the emergence of resistance, mostly due to the production of acquired serine- (SBL) and metallo-ß-lactamase (MBL) enzymes. To address this resistance issue, multiple ß-lactam/ß-lactamase inhibitor combinations have been successfully introduced into the clinic over the past several decades. However, all of those combinations contain SBL inhibitors and, as yet, there are no MBL inhibitors in clinical use. Consequently, there exists an unaddressed yet growing healthcare problem due to the rise in recent years of highly resistant strains which produce New Delhi metallo (NDM)-type metallo-carbapenemases. Previously, we reported the characterization of an advanced MBL inhibitor lead compound, ANT431. Herein, we discuss the completion of a lead optimization campaign culminating in the discovery of the preclinical candidate ANT2681, a potent NDM inhibitor with strong potential for clinical development.


Subject(s)
Enterobacteriaceae , beta-Lactamase Inhibitors , Anti-Bacterial Agents/pharmacology , Meropenem/pharmacology , Monobactams , beta-Lactamase Inhibitors/pharmacology
4.
Biomolecules ; 10(8)2020 07 23.
Article in English | MEDLINE | ID: mdl-32717907

ABSTRACT

To fight the increasingly worrying bacterial resistance to antibiotics, the discovery and development of new therapeutics is urgently needed. Here, we report on a new series of 1,2,4-triazole-3-thione compounds as inhibitors of metallo-ß-lactamases (MBLs), which represent major resistance determinants to ß-lactams, and especially carbapenems, in Gram-negative bacteria. These molecules are stable analogs of 4-amino-1,2,4-triazole-derived Schiff bases, where the hydrazone-like bond has been reduced (hydrazine series) or the 4-amino group has been acylated (hydrazide series); the synthesis and physicochemical properties thereof are described. The inhibitory potency was determined on the most clinically relevant acquired MBLs (IMP-, VIM-, and NDM-types subclass B1 MBLs). When compared with the previously reported hydrazone series, hydrazine but not hydrazide analogs showed similarly potent inhibitory activity on VIM-type enzymes, especially VIM-2 and VIM-4, with Ki values in the micromolar to submicromolar range. One of these showed broad-spectrum inhibition as it also significantly inhibited VIM-1 and NDM-1. Restoration of ß-lactam activity in microbiological assays was observed for one selected compound. Finally, the binding to the VIM-2 active site was evaluated by isothermal titration calorimetry and a modeling study explored the effect of the linker structure on the mode of binding with this MBL.


Subject(s)
Drug Resistance, Bacterial/drug effects , Gram-Negative Bacteria/drug effects , Thiones/chemistry , Triazoles/chemistry , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Infections/microbiology , Bacterial Infections/prevention & control , Biocatalysis/drug effects , Carbapenems/chemistry , Carbapenems/pharmacology , Gram-Negative Bacteria/metabolism , Humans , Microbial Sensitivity Tests , Molecular Structure , beta-Lactamase Inhibitors/chemistry , beta-Lactams/chemistry , beta-Lactams/pharmacology
5.
Article in English | MEDLINE | ID: mdl-29784851

ABSTRACT

New Delhi metallo-ß-lactamase 1 (NDM-1) is a subclass B1 metallo-ß-lactamase that exhibits a broad spectrum of activity against ß-lactam antibiotics. Here we report the kinetic study of 6 Q119X variants obtained by site-directed mutagenesis of NDM-1. All Q119X variants were able to hydrolyze carbapenems, penicillins and first-, second-, third-, and fourth-generation cephalosporins very efficiently. In particular, Q119E, Q119Y, Q119V, and Q119K mutants showed improvements in kcat/Km values for penicillins, compared with NDM-1. The catalytic efficiencies of the Q119K variant for benzylpenicillin and carbenicillin were about 65- and 70-fold higher, respectively, than those of NDM-1. The Q119K and Q119Y enzymes had kcat/Km values for ceftazidime about 25- and 89-fold higher, respectively, than that of NDM-1.


Subject(s)
beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Kinetics , Microbial Sensitivity Tests , Penicillins/pharmacology
6.
ACS Med Chem Lett ; 9(1): 45-50, 2018 Jan 11.
Article in English | MEDLINE | ID: mdl-29348810

ABSTRACT

Bacterial resistance has become a worldwide concern after the emergence of metallo-ß-lactamases (MBLs). They represent one of the major mechanisms of bacterial resistance against beta-lactam antibiotics. Among MBLs, New Delhi metallo-ß-lactamase-1 NDM-1, the most prevalent type, is extremely efficient in inactivating nearly all-available antibiotics including last resort carbapenems. No inhibitors for NDM-1 are currently available in therapy, making the spread of NDM-1 producing bacterial strains a serious menace. With this perspective, we performed a structure-based in silico screening of a commercially available library using FLAPdock and identified several, non-ß-lactam derivatives as promising candidates active against NDM-1. The binding affinities of the highest scoring hits were measured in vitro revealing, for some of them, low micromolar affinity toward NDM-1. For the best inhibitors, efficacy against resistant bacterial strains overexpressing NDM-1 was validated, confirming their favorable synergistic effect in combination with the carbapenem Meropenem.

7.
PLoS One ; 13(1): e0189686, 2018.
Article in English | MEDLINE | ID: mdl-29293526

ABSTRACT

BACKGROUND: New Delhi Metallo-ß-Lactamase (NDM-1) is one of the most recent additions to the ß-lactamases family. Since its discovery in 2009, NDM-1 producing Enterobacteriaceae have disseminated globally. With few effective antibiotics against NDM-1 producers, there is an urgent need to design new drug inhibitors through the help of structural and mechanistic information available from mutagenic studies. RESULTS/CONCLUSIONS: In our study we focus the attention on the non-catalytic residue Leucine 209 by changing it into a Phenylalanine. The L209F laboratory variant of NDM-1 displays a drastic reduction of catalytic efficiency (due to low kcat values) towards penicillins, cephalosporins and carbapenems. Thermofluor-based assay demonstrated that NDM-1 and L209F are stable to the temperature and the zinc content is the same in both enzymes as demonstrated by experiments with PAR in the presence of GdnHCL. Molecular Dynamics (MDs) simulations, carried out on NDM-1 and L209F both complexed and uncomplexed with Benzylpenicillin indicate that the point mutation produces a significant mechanical destabilization of the enzyme and also an increase of water content. These observations clearly show that the single mutation induces drastic changes in the enzyme properties which can be related to the observed different catalytic behavior.


Subject(s)
beta-Lactamases/metabolism , Catalytic Domain , Enterobacteriaceae/genetics , Kinetics , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , beta-Lactamases/chemistry , beta-Lactamases/genetics
8.
J Glob Antimicrob Resist ; 10: 95-100, 2017 09.
Article in English | MEDLINE | ID: mdl-28711560

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the role of residue 238 in CTX-M-15 and CTX-M-15G238C mutant with respect to carbapenems and various ß-lactamase inhibitors. METHODS: A CTX-M-15G238C laboratory mutant was generated by site-directed mutagenesis from CTX-M-15 enzyme by replacing glycine 238 with cysteine. Thiol titration and p-chloromercuribenzoate (PCMB) inactivation assays were used to ascertain the presence of a disulfide bridge in the active site of CTX-M-15G238C. Kinetic parameters were determined both for CTX-M-15 and CTX-M-15G238C enzymes by analysing either the complete hydrolysis time courses or under initial rate conditions. RESULTS: In CTX-M-15G238C mutant, the two cysteines (C69 and C238) located in the enzyme active site were unable to form a disulfide bridge. CTX-M-15 and thermostable CTX-M-15G238C were used to study the kinetic interaction with carbapenems, which behaved as poor substrates for both enzymes. Meropenem and ertapenem acted as transient inactivators for CTX-M-15 and CTX-M-15G238C, and for these compounds the variation of kobs versus the inactivator concentration was linear. Imipenem behaved as a transient inactivator for CTX-M-15 and as an inactivator (with k+3=0) for CTX-M-15G238C. In any case, the k+2/K values for CTX-M-15G238C were higher than those for CTX-M-15. CONCLUSIONS: Compared with CTX-M-15, CTX-M-15G238C mutant appears to have a more favourable conformation for carbapenem acylation and higher activity against cefotaxime, which could be due to the presence of free -SH groups in the enzyme active site.


Subject(s)
Carbapenems/pharmacology , Enzyme Activation/drug effects , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/drug effects , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Catalytic Domain/drug effects , Catalytic Domain/genetics , Cefotaxime/pharmacology , Cloning, Molecular , Drug Interactions , Enzyme Activation/genetics , Enzyme Assays , Enzyme Inhibitors/pharmacology , Enzyme Stability/drug effects , Enzyme Stability/genetics , Escherichia coli/genetics , Imipenem/pharmacology , Kinetics , Mutagenesis, Site-Directed , Protein Conformation , Sequence Analysis, Protein , beta-Lactamases/genetics
11.
Antimicrob Agents Chemother ; 60(4): 2366-72, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26856833

ABSTRACT

Two laboratory mutants of NDM-1 were generated by replacing the isoleucine at position 35 with threonine and serine residues: the NDM-1(I35T)and NDM-1(I35S)enzymes. These mutants were well characterized, and their kinetic parameters were compared with those of the NDM-1 wild type. Thekcat,Km, andkcat/Kmvalues calculated for the two mutants were slightly different from those of the wild-type enzyme. Interestingly, thekcat/Kmof NDM-1(I35S)for loracarbef was about 14-fold higher than that of NDM-1. Far-UV circular dichroism (CD) spectra of NDM-1 and NDM-1(I35T)and NDM-1(I35S)enzymes suggest local structural rearrangements in the secondary structure with a marked reduction of α-helix content in the mutants.


Subject(s)
Anti-Bacterial Agents/chemistry , Cephalosporins/chemistry , Escherichia coli/drug effects , Isoleucine/chemistry , beta-Lactam Resistance/genetics , beta-Lactamases/chemistry , Amino Acid Substitution , Anti-Bacterial Agents/pharmacology , Biocatalysis , Catalytic Domain , Cephalosporins/pharmacology , Cloning, Molecular , Escherichia coli/enzymology , Escherichia coli/genetics , Gene Expression , Isoleucine/metabolism , Kinetics , Models, Molecular , Mutation , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serine/chemistry , Serine/metabolism , Threonine/chemistry , Threonine/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism
12.
Antimicrob Agents Chemother ; 60(5): 3123-6, 2016 05.
Article in English | MEDLINE | ID: mdl-26883708

ABSTRACT

Site-directed mutagenesis of CphA indicated that prolines in the P158-P172 loop are essential for the stability and the catalytic activity of subclass B2 metallo-ß-lactamases against carbapenems. The sequential substitution of proline led to a decrease of the catalytic efficiency of the variant compared to the wild-type (WT) enzyme but also to a higher affinity for the binding of the second zinc ion.


Subject(s)
Bacterial Proteins/metabolism , Carbapenems/pharmacology , beta-Lactamases/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Binding Sites , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Proline/chemistry , Proline/metabolism , Sequence Analysis, Protein , Structure-Activity Relationship , Substrate Specificity/genetics , Substrate Specificity/physiology , Zinc/pharmacology , beta-Lactamases/chemistry , beta-Lactamases/genetics
13.
Antimicrob Agents Chemother ; 59(8): 4990-3, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25987617

ABSTRACT

Two new natural CphA metallo-ß-lactamases, the CphA4 and CphA5 enzymes, were identified in water samples from municipal sewage in central Italy. Compared to CphA, the CphA4 and CphA5 enzymes showed numerous point mutations. These enzymes have a narrow spectrum of substrates focused on carbapenems only. CphA5 showed kcat values about 40-, 12-, and 97-fold higher than those observed for CphA4 versus imipenem, ertapenem, and biapenem, respectively.


Subject(s)
Aeromonas hydrophila/enzymology , Bacterial Proteins/genetics , Sewage/microbiology , beta-Lactamases/genetics , Aeromonas hydrophila/drug effects , Aeromonas hydrophila/genetics , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Ertapenem , Imipenem/pharmacology , Italy , Molecular Sequence Data , Point Mutation/genetics , Thienamycins/pharmacology , beta-Lactams/pharmacology
14.
Microb Drug Resist ; 21(1): 97-101, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25275951

ABSTRACT

In this study 114 extensively drug-resistant Acinetobacter baumannii clinical isolates were characterized. The strains were collected at L'Aquila Hospital after the earthquake in L'Aquila city (central Italy) on the 6th of April 2009. The genes blaOXA-23 and blaOXA-51 were detected in all clinical isolates analyzed, whereas blaTEM-1 allele was detected in 56/114 isolates. The blaOXA-23 gene is located downstream the ISAba region and is under control of a strong promoter. On 42/80 A. baumannii the presence of two class 1 integrons was ascertained on chromosomal DNA. Variable regions show different gene array: (1) aadB and aadA2, (2) aacA4, aac(6')-Ib-cr, and aadA1. Macrorestriction analysis using ApaI restriction endonuclease identifies three clusters (A, B, and C) according to pulsed-field gel electrophoresis profiles. All isolates analyzed belong to the clone A. baumannii sequence type 2.


Subject(s)
Acinetobacter Infections/microbiology , Acinetobacter baumannii/isolation & purification , Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , beta-Lactamases/genetics , Acinetobacter Infections/epidemiology , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/genetics , Base Sequence , Community-Acquired Infections/epidemiology , Community-Acquired Infections/microbiology , Conjugation, Genetic , DNA, Bacterial/genetics , Electrophoresis, Gel, Pulsed-Field , Genes, Bacterial , Hospitals, Teaching/statistics & numerical data , Humans , Italy/epidemiology , Molecular Sequence Data , Multilocus Sequence Typing , Plasmids/genetics , Polymorphism, Restriction Fragment Length
SELECTION OF CITATIONS
SEARCH DETAIL