Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nature ; 622(7981): 87-92, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37794266

ABSTRACT

Disaster losses are increasing and evidence is mounting that climate change is driving up the probability of extreme natural shocks1-3. Yet it has also proved politically expedient to invoke climate change as an exogenous force that supposedly places disasters beyond the influence of local and national authorities4,5. However, locally determined patterns of urbanization and spatial development are key factors to the exposure and vulnerability of people to climatic shocks6. Using high-resolution annual data, this study shows that, since 1985, human settlements around the world-from villages to megacities-have expanded continuously and rapidly into present-day flood zones. In many regions, growth in the most hazardous flood zones is outpacing growth in non-exposed zones by a large margin, particularly in East Asia, where high-hazard settlements have expanded 60% faster than flood-safe settlements. These results provide systematic evidence of a divergence in the exposure of countries to flood hazards. Instead of adapting their exposure, many countries continue to actively amplify their exposure to increasingly frequent climatic shocks.


Subject(s)
Cities , Floods , Human Migration , Urbanization , Asia, Eastern , Cities/statistics & numerical data , Climate Change/statistics & numerical data , Floods/statistics & numerical data , Human Migration/statistics & numerical data , Human Migration/trends , Probability , Urbanization/trends
2.
Sci Rep ; 13(1): 16251, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37758785

ABSTRACT

The urban community faces a significant obstacle in effectively utilising Earth Observation (EO) intelligence, particularly the Copernicus EO program of the European Union, to address the multifaceted aspects of urban sustainability and bolster urban resilience in the face of climate change challenges. In this context, here we present the efforts of the CURE project, which received funding under the European Union's Horizon 2020 Research and Innovation Framework Programme, to leverage the Copernicus Core Services (CCS) in supporting urban resilience. CURE provides spatially disaggregated environmental intelligence at a local scale, demonstrating that CCS can facilitate urban planning and management strategies to improve the resilience of cities. With a strong emphasis on stakeholder engagement, CURE has identified eleven cross-cutting applications between CCS that correspond to the major dimensions of urban sustainability and align with user needs. These applications have been integrated into a cloud-based platform known as DIAS (Data and Information Access Services), which is capable of delivering reliable, usable and relevant intelligence to support the development of downstream services towards enhancing resilience planning of cities throughout Europe.

3.
Sci Data ; 10(1): 436, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37419895

ABSTRACT

"Leaving no one behind" is the fundamental objective of the 2030 Agenda for Sustainable Development. Latin America and the Caribbean is marked by social inequalities, whilst its total population is projected to increase to almost 760 million by 2050. In this context, contemporary and spatially detailed datasets that accurately capture the distribution of residential population are critical to appropriately inform and support environmental, health, and developmental applications at subnational levels. Existing datasets are under-utilised by governments due to the non-alignment with their own statistics. Therefore, official statistics at the finest level of administrative units available have been implemented to construct an open-access repository of high-resolution gridded population datasets for 40 countries in Latin American and the Caribbean. These datasets are detailed here, alongside the 'top-down' approach and methods to generate and validate them. Population distribution datasets for each country were created at a resolution of 3 arc-seconds (approximately 100 m at the equator), and are all available from the WorldPop Data Repository.


Subject(s)
Population Dynamics , Caribbean Region , Latin America , Population Growth , Socioeconomic Factors , Humans
4.
Int J Health Geogr ; 22(1): 11, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37208713

ABSTRACT

BACKGROUND: The negative effect of air pollution on human health is widely reported in recent literature. It typically involves urbanized areas where the population is concentrated and where most primary air pollutants are produced. A comprehensive health risk assessment is therefore of strategic importance for health authorities. METHODS: In this study we propose a methodology to perform an indirect and retrospective health risk assessment of all-cause mortality associated with long-term exposure to particulate matter less than 2.5 microns (PM2.5), nitrogen dioxide (NO2) and ozone (O3) in a typical Monday to Friday working week. A combination of satellite-based settlement data, model-based air pollution data, land use, demographics and regional scale mobility, allowed to examine the effect of population mobility and pollutants daily variations on the health risk. A Health Risk Increase (HRI) metric was derived on the basis of three components: hazard, exposure and vulnerability, utilizing the relative risk values from the World Health Organization. An additional metric, the Health Burden (HB) was formulated, which accounts for the total number of people exposed to a certain risk level. RESULTS: The effect of regional mobility patterns on the HRI metric was assessed, resulting in an increased HRI associated with all three stressors when considering a dynamic population compared to a static one. The effect of diurnal variation of pollutants was only observed for NO2 and O3. For both, the HRI metric resulted in significantly higher values during night. Concerning the HB parameter, we identified the commuting flows of the population as the main driver in the resulting metric. CONCLUSIONS: This indirect exposure assessment methodology provides tools to support policy makers and health authorities in planning intervention and mitigation measures. The study was carried out in Lombardy, Italy, one of the most polluted regions in Europe, but the incorporation of satellite data makes our approach valuable for studying global health.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Humans , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/analysis , Retrospective Studies , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Risk Assessment , Environmental Exposure/adverse effects , Environmental Exposure/analysis
5.
Sci Rep ; 11(1): 23289, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857847

ABSTRACT

Human settlements on Earth are scattered in a multitude of shapes, sizes and spatial arrangements. These patterns are often not random but a result of complex geographical, cultural, economic and historical processes that have profound human and ecological impacts. However, little is known about the global distribution of these patterns and the spatial forces that creates them. This study analyses human settlements from high-resolution satellite imagery and provides a global classification of spatial patterns. We find two emerging classes, namely agglomeration and dispersion. In the former, settlements are fewer than expected based on the predictions of scaling theory, while an unexpectedly high number of settlements characterizes the latter. To explain the observed spatial patterns, we propose a model that combines two agglomeration forces and simulates human settlements' historical growth. Our results show that our model accurately matches the observed global classification (F1: 0.73), helps to understand and estimate the growth of human settlements and, in turn, the distribution and physical dynamics of all human settlements on Earth, from small villages to cities.


Subject(s)
Earth, Planet , Environment , Geography , Population Density , Population Dynamics , Humans , Satellite Imagery , Spatial Analysis , Urbanization
6.
Sci Data ; 7(1): 242, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32686674

ABSTRACT

Human settlements are the cause and consequence of most environmental and societal changes on Earth; however, their location and extent is still under debate. We provide here a new 10 m resolution (0.32 arc sec) global map of human settlements on Earth for the year 2015, namely the World Settlement Footprint 2015 (WSF2015). The raster dataset has been generated by means of an advanced classification system which, for the first time, jointly exploits open-and-free optical and radar satellite imagery. The WSF2015 has been validated against 900,000 samples labelled by crowdsourcing photointerpretation of very high resolution Google Earth imagery and outperforms all other similar existing layers; in particular, it considerably improves the detection of very small settlements in rural regions and better outlines scattered suburban areas. The dataset can be used at any scale of observation in support to all applications requiring detailed and accurate information on human presence (e.g., socioeconomic development, population distribution, risks assessment, etc.).

7.
Sci Rep ; 8(1): 11498, 2018 Jul 31.
Article in English | MEDLINE | ID: mdl-30065389

ABSTRACT

One important challenge facing the urbanization and global environmental change community is to understand the relation between urban form, energy use and carbon emissions. Missing from the current literature are scientific assessments that evaluate the impacts of different urban spatial units on energy fluxes; yet, this type of analysis is needed by urban planners, who recognize that local scale zoning affects energy consumption and local climate. Satellite-based estimation of urban energy fluxes at neighbourhood scale is still a challenge. Here we show the potential of the current satellite missions to retrieve urban energy budget fluxes, supported by meteorological observations and evaluated by direct flux measurements. We found an agreement within 5% between satellite and in-situ derived net all-wave radiation; and identified that wall facet fraction and urban materials type are the most important parameters for estimating heat storage of the urban canopy. The satellite approaches were found to underestimate measured turbulent heat fluxes, with sensible heat flux being most sensitive to surface temperature variation (-64.1, +69.3 W m-2 for ±2 K perturbation).  They also underestimate anthropogenic heat fluxes. However, reasonable spatial patterns are obtained for the latter allowing hot-spots to be identified, therefore supporting both urban planning and urban climate modelling.

8.
IEEE Trans Pattern Anal Mach Intell ; 32(5): 770-87, 2010 May.
Article in English | MEDLINE | ID: mdl-20299704

ABSTRACT

This paper addresses pattern classification in the framework of domain adaptation by considering methods that solve problems in which training data are assumed to be available only for a source domain different (even if related) from the target domain of (unlabeled) test data. Two main novel contributions are proposed: 1) a domain adaptation support vector machine (DASVM) technique which extends the formulation of support vector machines (SVMs) to the domain adaptation framework and 2) a circular indirect accuracy assessment strategy for validating the learning of domain adaptation classifiers when no true labels for the target--domain instances are available. Experimental results, obtained on a series of two-dimensional toy problems and on two real data sets related to brain computer interface and remote sensing applications, confirmed the effectiveness and the reliability of both the DASVM technique and the proposed circular validation strategy.


Subject(s)
Algorithms , Artificial Intelligence , Models, Theoretical , Pattern Recognition, Automated/methods , Computer Simulation
9.
IEEE Trans Biomed Eng ; 55(9): 2275-85, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18713697

ABSTRACT

This paper presents an automatic system for the analysis and classification of atrial fibrillation (AF) patterns from bipolar intracardiac signals. The system is made up of: 1) a feature-extraction module that defines and extracts a set of measures potentially useful for characterizing AF types on the basis of their degree of organization; 2) a feature-selection module (based on the Jeffries-Matusita distance and a branch and bound search algorithm) identifying the best subset of features for discriminating different AF types; and 3) a support vector machine technique-based classification module that automatically discriminates the AF types according to the Wells' criteria. The automatic system was applied on 100 intracardiac AF signal strips and on a selection of 11 representative features, demonstrating: a) the possibility to properly identify the most significant features for the discrimination of AF types; b) higher accuracy (97.7% using the seven most informative features) than the traditional maximum likelihood classifier; and c) effectiveness in AF classification also with few training samples (accuracy = 88.3% with only five training signals). Finally, the system identifies a combination of indices characterizing changes of morphology of atrial activation waves and perturbation of the isoelectric line as the most effective in separating the AF types.


Subject(s)
Algorithms , Artificial Intelligence , Atrial Fibrillation/diagnosis , Diagnosis, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Humans , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...