Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 735: 150657, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39265363

ABSTRACT

Metacaspases are a distinct class of cysteine proteases predominantly found in plants, fungi, and protozoa, crucial for regulating programmed cell death (PCD). They possess unique structural features and differ markedly from caspases in their activation mechanisms and substrate specificities, with a notable preference for binding basic residues in substrates. In this study, we introduced vanillin-derived oximic compounds to explore their pharmaceutical potential. We evaluated these compounds for their inhibitory effects on TbMCA2, a metacaspase in Trypanosoma brucei, identifying AO-7, AO-12, and EO-20 as promising inhibitors. AO-12 showed significant potential as a non-competitive inhibitor with notable IC50 values. Molecular docking studies were also conducted to evaluate the binding affinity of these compounds for TbMCA2. This research is particularly relevant given the urgent need for more effective and less toxic treatments for trypanosomiasis, a parasitic disease caused by trypanosomes. The absence of available vaccines and the limitations imposed by drug toxicity underscore the importance of these findings. Our study represents a significant advancement in developing therapeutic agents targeting metacaspases in trypanosomatids and highlights the necessity of understanding metacaspase regulation across various species. It provides valuable insights into inhibitor sensitivity and potential species-specific therapeutic strategies. In conclusion, this research opens promising avenues for novel therapeutic agents targeting metacaspases in trypanosomatids, addressing a critical gap in combating neglected diseases associated with these pathogens. Further research is essential to refine the efficacy and safety profiles of these compounds, aiming to deliver more accessible and effective therapeutic solutions to populations afflicted by these debilitating diseases.

2.
Biochem Biophys Res Commun ; 687: 149185, 2023 12 20.
Article in English | MEDLINE | ID: mdl-37951047

ABSTRACT

Metacaspases are cysteine proteases belonging to the CD clan of the C14 family. They possess important characteristics, such as specificity for cleavage after basic residues (Arg/Lys) and dependence on calcium ions to exert their catalytic activity. They are defined by the presence of a large subunit (p20) and a small subunit (p10) and are classified into types I, II, and III. Type I metacaspases have a characteristic pro-domain at the N-terminal of the enzyme, preceding a region rich in glutamine and asparagine. In the yeast Saccharomyces cerevisiae, a type I metacaspase is found. This organism encodes a single metacaspase that participates in the process of programmed cell death by apoptosis. The study focuses on cloning, expressing, and mutating Saccharomyces cerevisiae metacaspase (ScMCA-Ia). Mutations in Cys155 and Cys276 were introduced to investigate autoprocessing mechanisms. Results revealed that Cys155 plays a crucial role in autoprocessing, initiating a conformational change that activates ScMCA-Ia. Comparative analysis with TbMCA-IIa highlighted the significance of the N-terminal region in substrate access to the active site. The study proposes a two-step processing mechanism for type I metacaspases, where an initial processing step generates the active form, followed by a distinct intermolecular processing step. This provides new insights into ScMCA-Ia's activation and function. The findings hold potential implications for understanding cellular processes regulated by metacaspases. Overall, this research significantly advances knowledge in metacaspase biology.


Subject(s)
Caspases , Saccharomyces cerevisiae , Caspases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Cysteine/genetics , Apoptosis , Catalytic Domain
3.
Toxicon ; 203: 30-39, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34571099

ABSTRACT

NPCdc is a natriuretic peptide synthesized from the amino acid sequence of the Crotalus durissus cascavella snake venom peptide, NP2Casca. NPCdc presents hypotensive and antioxidants effects. This study aimed to investigate in vivo whether angiotensin I-converting enzyme (ACE) inhibition would influence the impact of NPCdc in arterial pressure of rats submitted to 5/6 nephrectomy (Nx). Adult male Wistar rats following a 5/6 Nx were treated with enalapril (NxE group, 10 mg/kg/day, n = 9) or vehicle (Nx group, n = 8) for two weeks. On the 15th day after Nx, rats were anaesthetized and submitted to mean arterial pressure (MAP) determination before and after receiving two intravenous injections of saline (vehicle, n = 9) or NPCdc (0.3 µg/kg dissolved in saline, n = 18) separated by a 20-min interval. The kidneys were submitted to oxidative stress analysis. The basal MAP of the NxE group was nearly 20% lower (P < 0.05) than non-treated rats. NPCdc administration decreased the MAP in both groups; however, in the NxE group, the effects were observed only in the second injection. The peptide also decreased the NADPH oxidase activity in the renal cortex. Additionally, the hydrolysis of NPCdc by recombinant neprilysin (NEP) was monitored by mass spectrometry. NPCdc was cleaved by NEP at different peptides with an inhibition constant (Ki) of 1.5 µM, determined by a competitive assay using the NEP fluorescence resonance energy transfer (FRET) peptide substrate Abz-(d)Arg-Gly-Leu-EDDnp. Docking experiments confirmed the high affinity of NPCdc toward NEP. These findings provide new insights into the antihypertensive and antioxidant mechanism of action of NPCdc. Altogether, the results presented here suggest that NPCdc must be further studied as a potential therapy for cardiorenal syndromes.


Subject(s)
Enalapril , Neprilysin , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Blood Pressure , Male , Natriuretic Peptides , Peptides , Peptidyl-Dipeptidase A , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL