Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Development ; 151(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39007397

ABSTRACT

Many genes are known to regulate retinal regeneration after widespread tissue damage. Conversely, genes controlling regeneration after limited cell loss, as per degenerative diseases, are undefined. As stem/progenitor cell responses scale to injury levels, understanding how the extent and specificity of cell loss impact regenerative processes is important. Here, transgenic zebrafish enabling selective retinal ganglion cell (RGC) ablation were used to identify genes that regulate RGC regeneration. A single cell multiomics-informed screen of 100 genes identified seven knockouts that inhibited and 11 that promoted RGC regeneration. Surprisingly, 35 out of 36 genes known and/or implicated as being required for regeneration after widespread retinal damage were not required for RGC regeneration. The loss of seven even enhanced regeneration kinetics, including the proneural factors neurog1, olig2 and ascl1a. Mechanistic analyses revealed that ascl1a disruption increased the propensity of progenitor cells to produce RGCs, i.e. increased 'fate bias'. These data demonstrate plasticity in the mechanism through which Müller glia convert to a stem-like state and context specificity in how genes function during regeneration. Increased understanding of how the regeneration of disease-relevant cell types is specifically controlled will support the development of disease-tailored regenerative therapeutics.


Subject(s)
Animals, Genetically Modified , Retinal Ganglion Cells , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/genetics , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/physiology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Nerve Regeneration/genetics , Nerve Regeneration/physiology , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , CRISPR-Cas Systems/genetics , Regeneration/genetics , Regeneration/physiology , Retina/metabolism , Retina/cytology , Stem Cells/metabolism , Stem Cells/cytology , Transcription Factors
2.
bioRxiv ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38045256

ABSTRACT

Many genes are known to regulate retinal regeneration following widespread tissue damage. Conversely, genes controlling regeneration following limited retinal cell loss, akin to disease conditions, are undefined. Combining a novel retinal ganglion cell (RGC) ablation-based glaucoma model, single cell omics, and rapid CRISPR/Cas9-based knockout methods to screen 100 genes, we identified 18 effectors of RGC regeneration kinetics. Surprisingly, 32 of 33 previously known/implicated regulators of retinal tissue regeneration were not required for RGC replacement; 7 knockouts accelerated regeneration, including sox2, olig2, and ascl1a . Mechanistic analyses revealed loss of ascl1a increased "fate bias", the propensity of progenitors to produce RGCs. These data demonstrate plasticity and context-specificity in how genes function to control regeneration, insights that could help to advance disease-tailored therapeutics for replacing lost retinal cells. One sentence summary: We discovered eighteen genes that regulate the regeneration of retinal ganglion cells in zebrafish.

SELECTION OF CITATIONS
SEARCH DETAIL