Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Med Chem ; 63(11): 6179-6202, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32390431

ABSTRACT

The global impact of malaria remains staggering despite extensive efforts to eradicate the disease. With increasing drug resistance and the absence of a clinically available vaccine, there is an urgent need for novel, affordable, and safe drugs for prevention and treatment of malaria. Previously, we described a novel antimalarial acridone chemotype that is potent against both blood-stage and liver-stage malaria parasites. Here, we describe an optimization process that has produced a second-generation acridone series with significant improvements in efficacy, metabolic stability, pharmacokinetics, and safety profiles. These findings highlight the therapeutic potential of dual-stage targeting acridones as novel drug candidates for further preclinical development.


Subject(s)
Acridones/chemistry , Antimalarials/chemistry , Acridones/pharmacokinetics , Acridones/pharmacology , Acridones/therapeutic use , Administration, Oral , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Cell Survival/drug effects , Disease Models, Animal , Female , Half-Life , Hep G2 Cells , Humans , Life Cycle Stages/drug effects , Malaria/drug therapy , Malaria/pathology , Male , Mice , Mice, Inbred C57BL , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Structure-Activity Relationship
2.
Clin Infect Dis ; 71(6): 1481-1490, 2020 09 12.
Article in English | MEDLINE | ID: mdl-31621832

ABSTRACT

BACKGROUND: Chemoprophylaxis vaccination with sporozoites (CVac) with chloroquine induces protection against a homologous Plasmodium falciparum sporozoite (PfSPZ) challenge, but whether blood-stage parasite exposure is required for protection remains unclear. Chloroquine suppresses and clears blood-stage parasitemia, while other antimalarial drugs, such as primaquine, act against liver-stage parasites. Here, we evaluated CVac regimens using primaquine and/or chloroquine as the partner drug to discern whether blood-stage parasite exposure impacts protection against homologous controlled human malaria infection. METHODS: In a Phase I, randomized, partial double-blind, placebo-controlled study of 36 malaria-naive adults, all CVac subjects received chloroquine prophylaxis and bites from 12-15 P. falciparum-infected mosquitoes (CVac-chloroquine arm) at 3 monthly iterations, and some received postexposure primaquine (CVac-primaquine/chloroquine arm). Drug control subjects received primaquine, chloroquine, and uninfected mosquito bites. After a chloroquine washout, subjects, including treatment-naive infectivity controls, underwent homologous, PfSPZ controlled human malaria infection and were monitored for parasitemia for 21 days. RESULTS: No serious adverse events occurred. During CVac, all but 1 subject in the study remained blood-smear negative, while only 1 subject (primaquine/chloroquine arm) remained polymerase chain reaction-negative. Upon challenge, compared to infectivity controls, 3/3 chloroquine arm subjects displayed delayed patent parasitemia (P = .01) but not sterile protection, while 3/11 primaquine/chloroquine subjects remained blood-smear negative. CONCLUSIONS: CVac-primaquine/chloroquine is safe and induces sterile immunity to P. falciparum in some recipients, but a single 45 mg dose of primaquine postexposure does not completely prevent blood-stage parasitemia. Unlike previous studies, CVac-chloroquine did not produce sterile immunity. CLINICAL TRIALS REGISTRATION: NCT01500980.


Subject(s)
Antimalarials , Malaria, Falciparum , Adult , Animals , Antimalarials/therapeutic use , Chemoprevention , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Plasmodium falciparum , Sporozoites , Vaccination
4.
J Infect Dis ; 220(11): 1761-1770, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31549155

ABSTRACT

BACKGROUND: Plasmodium vivax malaria requires a 2-week course of primaquine (PQ) for radical cure. Evidence suggests that the hepatic isoenzyme cytochrome P450 2D6 (CYP2D6) is the key enzyme required to convert PQ into its active metabolite. METHODS: CYP2D6 genotypes and phenotypes of 550 service personnel were determined, and the pharmacokinetics (PK) of a 30-mg oral dose of PQ was measured in 45 volunteers. Blood and urine samples were collected, with PQ and metabolites were measured using ultraperformance liquid chromatography with mass spectrometry. RESULTS: Seventy-six CYP2D6 genotypes were characterized for 530 service personnel. Of the 515 personnel for whom a single phenotype was predicted, 58% had a normal metabolizer (NM) phenotype, 35% had an intermediate metabolizer (IM) phenotype, 5% had a poor metabolizer (PM) phenotype, and 2% had an ultrametabolizer phenotype. The median PQ area under the concentration time curve from 0 to ∞ was lower for the NM phenotype as compared to the IM or PM phenotypes. The novel 5,6-ortho-quinone was detected in urine but not plasma from all personnel with the NM phenotype. CONCLUSION: The plasma PK profile suggests PQ metabolism is decreased in personnel with the IM or PM phenotypes as compared to those with the NM phenotype. The finding of 5,6-ortho-quinone, the stable surrogate for the unstable 5-hydroxyprimaquine metabolite, almost exclusively in personnel with the NM phenotype, compared with sporadic or no production in those with the IM or PM phenotypes, provides further evidence for the role of CYP2D6 in radical cure. CLINICAL TRIALS REGISTRATION: NCT02960568.


Subject(s)
Antimalarials/metabolism , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Genotype , Primaquine/metabolism , Administration, Oral , Adolescent , Adult , Antimalarials/administration & dosage , Antimalarials/pharmacokinetics , Blood Chemical Analysis , Chromatography, High Pressure Liquid , Cohort Studies , Female , Humans , Male , Mass Spectrometry , Middle Aged , Military Personnel , Phenotype , Plasma/chemistry , Primaquine/administration & dosage , Primaquine/pharmacokinetics , United States , Urinalysis , Urine/chemistry , Young Adult
5.
J Med Chem ; 62(7): 3475-3502, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30852885

ABSTRACT

Malaria remains one of the deadliest diseases in the world today. Novel chemoprophylactic and chemotherapeutic antimalarials are needed to support the renewed eradication agenda. We have discovered a novel antimalarial acridone chemotype with dual-stage activity against both liver-stage and blood-stage malaria. Several lead compounds generated from structural optimization of a large library of novel acridones exhibit efficacy in the following systems: (1) picomolar inhibition of in vitro Plasmodium falciparum blood-stage growth against multidrug-resistant parasites; (2) curative efficacy after oral administration in an erythrocytic Plasmodium yoelii murine malaria model; (3) prevention of in vitro Plasmodium berghei sporozoite-induced development in human hepatocytes; and (4) protection of in vivo P. berghei sporozoite-induced infection in mice. This study offers the first account of liver-stage antimalarial activity in an acridone chemotype. Details of the design, chemistry, structure-activity relationships, safety, metabolic/pharmacokinetic studies, and mechanistic investigation are presented herein.


Subject(s)
Acridones/chemistry , Acridones/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Drug Discovery/methods , Acridones/therapeutic use , Animals , Antimalarials/therapeutic use , Disease Models, Animal , Hep G2 Cells , Humans , Malaria/drug therapy , Mice , Plasmodium/classification , Plasmodium/drug effects , Species Specificity , Structure-Activity Relationship
6.
Stress ; 21(3): 267-273, 2018 05.
Article in English | MEDLINE | ID: mdl-29451058

ABSTRACT

Adolescence is a distinct developmental period characterized by behavioral and physiological maturation. Rapid ongoing changes during neurodevelopment in particular present potential opportunities for stress to have lasting effects on longitudinal outcomes of behavioral and neuroendocrine function. While adult stress effects on outcomes during adulthood have been characterized, little is known about the lasting effects of adolescent repeated stressor exposure on outcomes during adolescence. We have previously reported different stress responses in adolescent rats relative to adult rats, including a blunted fear response outcome in adulthood in rats stressed during adolescence. The present study characterized the ontogeny of behavioral and neuroendocrine responses to eight underwater trauma (UWT) exposures in rats over a two week poststress time period during adolescence (P34) or adulthood (P83) relative to age-matched control groups that underwent eight swimming episodes without UWT. Repeated UWT exposures starting in adolescence, but not adulthood, resulted in adverse behavioral responses on the elevated plus maze 1 day post-stress. Corticosterone responses did not differ between UWT-exposed and controls for either age group at 1 day or at 7 days poststress, although there was an effect of age on corticosterone levels. We conclude that repeated UWT stress events have a lasting, negative behavioral effect on adolescent rats that is not observed in adult rats after the two-week exposure window. These results suggest that neurophysiological mechanisms underlying recovery from a repeated stressor are immature in adolescence relative to adulthood in rats.


Subject(s)
Immersion/physiopathology , Stress, Psychological/psychology , Wounds and Injuries/physiopathology , Aging/psychology , Animals , Anxiety/psychology , Behavior, Animal , Corticosterone/blood , Exploratory Behavior , Rats , Rats, Sprague-Dawley , Reflex, Startle , Swimming/psychology , Water
7.
J Infect Dis ; 217(5): 693-702, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29216395

ABSTRACT

Background: DSM265 is a selective inhibitor of Plasmodium dihydroorotate dehydrogenase that fully protected against controlled human malarial infection (CHMI) by direct venous inoculation of Plasmodium falciparum sporozoites when administered 1 day before challenge and provided partial protection when administered 7 days before challenge. Methods: A double-blinded, randomized, placebo-controlled trial was performed to assess safety, tolerability, pharmacokinetics, and efficacy of 1 oral dose of 400 mg of DSM265 before CHMI. Three cohorts were studied, with DSM265 administered 3 or 7 days before direct venous inoculation of sporozoites or 7 days before 5 bites from infected mosquitoes. Results: DSM265-related adverse events consisted of mild-to-moderate headache and gastrointestinal symptoms. DSM265 concentrations were consistent with pharmacokinetic models (mean area under the curve extrapolated to infinity, 1707 µg*h/mL). Placebo-treated participants became positive by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and were treated 7-10 days after CHMI. Among DSM265-treated subjects, 2 of 6 in each cohort were sterilely protected. DSM265-treated recipients had longer times to development of parasitemia than placebo-treated participants (P < .004). Conclusions: This was the first CHMI study of a novel antimalarial compound to compare direct venous inoculation of sporozoites and mosquito bites. Times to qRT-PCR positivity and treatment were comparable for both routes. DSM265 given 3 or 7 days before CHMI was safe and well tolerated but sterilely protected only one third of participants.


Subject(s)
Antimalarials/administration & dosage , Chemoprevention/methods , Malaria, Falciparum/prevention & control , Pyrimidines/administration & dosage , Triazoles/administration & dosage , Adolescent , Adult , Animals , Antimalarials/adverse effects , Antimalarials/pharmacokinetics , Double-Blind Method , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/pathology , Female , Humans , Male , Middle Aged , Parasitemia/prevention & control , Placebos/administration & dosage , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Pyrimidines/adverse effects , Pyrimidines/pharmacokinetics , Real-Time Polymerase Chain Reaction , Treatment Outcome , Triazoles/adverse effects , Triazoles/pharmacokinetics , Young Adult
8.
Ann Pharmacother ; 52(3): 251-256, 2018 03.
Article in English | MEDLINE | ID: mdl-29047306

ABSTRACT

BACKGROUND: There is no established method for monitoring the anticoagulant effects of apixaban and rivaroxaban. Linear correlation between serum levels and anti-Xa activity has been shown, with r2 ranging from 0.88 to 0.99. However, there are minimal data in patients receiving apixaban 5 mg twice daily or rivaroxaban 20 mg once daily. OBJECTIVE: To evaluate the anti-Xa activity and serum levels at those doses and compare the trough anti-Xa activity. METHODS: This was a single-center prospective study,approved by the institutional review board. Patients on an inappropriate dose or receiving an interacting drug were excluded. Blood samples were drawn 0.5 to 3 hours before a dose for both agents, 2 to 3 hours after an apixaban dose, and 12 to 16 hours after a rivaroxaban dose. Anti-Xa activity and serum levels were determined, and correlation was done via regression analysis. Trough anti-Xa activity was compared using a t-test. RESULTS: The study enrolled 88 patients receiving each drug. The r2 values were 0.79 and 0.87 for apixaban and rivaroxaban, respectively. The mean trough anti-Xa activity was 1.79 ± 0.96 IU/mL for apixaban and 1.25 ± 0.88 IU for rivaroxaban ( P < 0.01). The trough sample was drawn a mean of 1.3 and 1.8 hours prior to the next dose for apixaban and rivaroxaban, respectively ( P < 0.01). CONCLUSIONS: Good correlation was shown between anti-Xa activity and serum levels. The clinical utility of monitoring anti-Xa activity and the significance of the difference in trough anti-Xa activity for these agents remains to be established.


Subject(s)
Factor Xa Inhibitors/blood , Factor Xa/analysis , Pyrazoles/blood , Pyridones/blood , Rivaroxaban/blood , Aged , Factor Xa Inhibitors/pharmacokinetics , Factor Xa Inhibitors/therapeutic use , Female , Humans , Male , Middle Aged , Pyrazoles/pharmacokinetics , Pyrazoles/therapeutic use , Pyridones/pharmacokinetics , Pyridones/therapeutic use , Rivaroxaban/pharmacokinetics , Rivaroxaban/therapeutic use
9.
Structure ; 25(7): 1089-1099.e3, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28648608

ABSTRACT

PGAM5 is a mitochondrial membrane protein that functions as an atypical Ser/Thr phosphatase and is a regulator of oxidative stress response, necroptosis, and autophagy. Here we present several crystal structures of PGAM5 including the activating N-terminal regulatory sequences, providing a model for structural plasticity, dimerization of the catalytic domain, and the assembly into an enzymatically active dodecameric form. Oligomeric states observed in structures were supported by hydrogen exchange mass spectrometry, size-exclusion chromatography, and analytical ultracentrifugation experiments in solution. We report that the catalytically important N-terminal WDPNWD motif acts as a structural integrator assembling PGAM5 into a dodecamer, allosterically activating the phosphatase by promoting an ordering of the catalytic loop. Additionally the observed active site plasticity enabled visualization of essential conformational rearrangements of catalytic elements. The comprehensive biophysical characterization offers detailed structural models of this key mitochondrial phosphatase that has been associated with the development of diverse diseases.


Subject(s)
Catalytic Domain , Mitochondrial Proteins/chemistry , Molecular Dynamics Simulation , Phosphoprotein Phosphatases/chemistry , Protein Multimerization , Allosteric Regulation , Allosteric Site , HEK293 Cells , Humans , Mitochondrial Proteins/metabolism , Phosphoprotein Phosphatases/metabolism
10.
Malar Res Treat ; 2017: 7508291, 2017.
Article in English | MEDLINE | ID: mdl-28491482

ABSTRACT

Decoquinate nanoparticle and microparticle suspended in an oily vehicle to retard drug release are evaluated for long-term malaria prophylaxis. Pharmacokinetic studies in normal animals and antimalarial efficacy in liver stage malaria mice were conducted at various single intramuscular-decoquinate doses for 2, 4, 6, or 8 weeks prior to infection with P. berghei sporozoites. The liver stage efficacy evaluation was monitored by using an in vivo imaging system. Full causal prophylaxis was shown in mice with a single intramuscular dose at 120 mg/kg of nanoparticle decoquinate (0.43 µm) for 2-3 weeks and with microparticle decoquinate (8.31 µm) injected 8 weeks earlier than inoculation. The time above MIC of 1,375 hr observed with the microparticle formulation provided a 2.2-fold longer drug exposure than with the nanoparticle formulation (624 hr). The prophylactic effect of the microparticle formulation observed in mice was shown to be 3-4 times longer than the nanoparticle decoquinate formulation.

11.
J Neurotrauma ; 34(19): 2768-2789, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28326890

ABSTRACT

Closed-head concussive injury is one of the most common causes of traumatic brain injury (TBI). Isolated concussions frequently produce acute neurological impairments, and individuals typically recover spontaneously within a short time frame. In contrast, brain injuries resulting from multiple concussions can result in cumulative damage and elevated risk of developing chronic brain pathologies. Increased attention has focused on identification of diagnostic markers that can prognostically serve as indices of brain health after injury, revealing the temporal profile of vulnerability to a second insult. Such markers may demarcate adequate recovery periods before concussed patients can return to required activities. We developed a noninvasive closed-head impact model that captures the hallmark symptoms of concussion in the absence of gross tissue damage. Animals were subjected to single or repeated concussive impact and examined using a battery of neurological, vestibular, sensorimotor, and molecular metrics. A single concussion induced transient, but marked, acute neurological impairment, gait alterations, neuronal death, and increased glial fibrillary acidic protein (GFAP) expression in brain tissue. As expected, repeated concussions exacerbated sensorimotor dysfunction, prolonged gait abnormalities, induced neuroinflammation, and upregulated GFAP and tau. These animals also exhibited chronic functional neurological impairments with sustained astrogliosis and white matter thinning. Acute changes in molecular signatures correlated with behavioral impairments, whereas increased times to regaining consciousness and balance impairments were associated with higher GFAP and neuroinflammation. Overall, behavioral consequences of either single or repeated concussive impact injuries appeared to resolve more quickly than the underlying molecular, metabolic, and neuropathological abnormalities. This observation, which is supported by similar studies in other mTBI models, underscores the critical need to develop more objective prognostic measures for guiding return-to-play decisions.


Subject(s)
Brain Concussion , Disease Models, Animal , Animals , Brain Concussion/complications , Brain Concussion/pathology , Brain Concussion/physiopathology , Male , Rats , Rats, Sprague-Dawley
12.
Malar J ; 15(1): 588, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-27923405

ABSTRACT

BACKGROUND: Due to the ability of the 8-aminoquinolines (8AQs) to kill different stages of the malaria parasite, primaquine (PQ) and tafenoquine (TQ) are vital for causal prophylaxis and the eradication of erythrocytic Plasmodium sp. parasites. Recognizing the potential role of cytochrome (CYP) 450 2D6 in the metabolism and subsequent hepatic efficacy of 8-aminoquinolines, studies were designed to explore whether CYP2D-mediated metabolism was related to the ability of single-dose PQ and TQ to eliminate the asexual and sexual erythrocytic stages of Plasmodium berghei. METHODS: An IV P. berghei sporozoite murine challenge model was utilized to directly compare causal prophylactic and erythrocytic activity (asexual and sexual parasite stages) dose-response relationships in C57BL/6 wild-type (WT) mice and subsequently compare the erythrocytic activity of PQ and TQ in WT and CYP2D knock-out (KO) mice. RESULTS: Single-dose administration of either 25 mg/kg TQ or 40 mg/kg PQ eradicated the erythrocytic stages (asexual and sexual) of P. berghei in C57BL WT and CYP2D KO mice. In WT animals, the apparent elimination of hepatic infections occurs at lower doses of PQ than are required to eliminate erythrocytic infections. In contrast, the minimally effective dose of TQ needed to achieve causal prophylaxis and to eradicate erythrocytic parasites was analogous. CONCLUSION: The genetic deletion of the CYP2D cluster does not affect the ability of PQ or TQ to eradicate the blood stages (asexual and sexual) of P. berghei after single-dose administration.


Subject(s)
Aminoquinolines/pharmacology , Antimalarials/pharmacology , Cytochrome P-450 CYP2D6/metabolism , Malaria/drug therapy , Plasmodium berghei/drug effects , Primaquine/pharmacology , Aminoquinolines/administration & dosage , Animals , Antimalarials/administration & dosage , Chemoprevention/methods , Cytochrome P-450 CYP2D6/deficiency , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Therapy/methods , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Primaquine/administration & dosage , Treatment Outcome
13.
Antimicrob Agents Chemother ; 60(10): 5906-13, 2016 10.
Article in English | MEDLINE | ID: mdl-27458212

ABSTRACT

Individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PDd) are at risk for developing hemolytic anemia when given the antimalarial drug primaquine (PQ). The WHO Evidence Review Group released a report suggesting that mass administration of a single dose of PQ at 0.25 mg of base/kg of body weight (mpk) (mouse equivalent of 3.125 mpk) could potentially reduce malaria transmission based on its gametocytocidal activity and could be safely administered to G6PD-deficient individuals, but there are limited safety data available confirming the optimum single dose of PQ. A single-dose administration of PQ was therefore assessed in our huRBC-SCID mouse model used to predict hemolytic toxicity with respect to G6PD deficiency. In this model, nonobese diabetic (NOD)/SCID mice are engrafted with human red blood cells (huRBC) from donors with the African or Mediterranean variant of G6PDd (A-G6PDd or Med-G6PDd, respectively) and demonstrate dose-dependent sensitivity to PQ. In mice engrafted with A-G6PD-deficient huRBC, single-dose PQ at 3.125, 6.25, or 12.5 mpk had no significant loss of huRBC compared to the vehicle control group. In contrast, in mice engrafted with Med-G6PDd huRBC, a single dose of PQ at 3.125, 6.25, or 12.5 mpk resulted in a significant, dose-dependent loss of huRBC compared to the value for the vehicle control group. Our data suggest that administration of a single low dose of 0.25 mpk of PQ could induce hemolytic anemia in Med-G6PDd individuals but that use of single-dose PQ at 0.25 mpk as a gametocytocidal drug to block transmission would be safe in areas where A-G6PDd predominates.


Subject(s)
Antimalarials/administration & dosage , Glucosephosphate Dehydrogenase Deficiency/parasitology , Malaria/transmission , Primaquine/administration & dosage , Animals , Antimalarials/pharmacokinetics , Disease Models, Animal , Erythrocyte Transfusion , Erythrocytes/drug effects , Humans , Mice, SCID , Primaquine/analogs & derivatives , Primaquine/pharmacokinetics
14.
Malar J ; 15(1): 280, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27188854

ABSTRACT

BACKGROUND: The liver-stage anti-malarial activity of primaquine and other 8-aminoquinoline molecules has been linked to bio-activation through CYP 2D6 metabolism. Factors such as CYP 2D6 poor metabolizer status and/or co-administration of drugs that inhibit/interact with CYP 2D6 could alter the pharmacological properties of primaquine. METHODS: In the present study, the inhibitory potential of the selective serotonin reuptake inhibitor (SSRI) and serotonin norepinephrine reuptake inhibitor (SNRI) classes of antidepressants for CYP 2D6-mediated primaquine metabolism was assessed using in vitro drug metabolism and in vivo pharmacological assays. RESULTS: The SSRI/SNRI classes of drug displayed a range of inhibitory activities on CYP 2D6-mediated metabolism of primaquine in vitro (IC50 1-94 µM). Fluoxetine and paroxetine were the most potent inhibitors (IC50 ~1 µM) of CYP 2D6-mediated primaquine metabolism, while desvenlafaxine was the least potent (IC50 ~94 µM). The most potent CYP 2D6 inhibitor, fluoxetine, was chosen to investigate the potential pharmacological consequences of co-administration with primaquine in vivo. The pharmacokinetics of a CYP 2D6-dependent primaquine metabolite were altered upon co-administration with fluoxetine. Additionally, in a mouse malaria model, co-administration of fluoxetine with primaquine reduced primaquine anti-malarial efficacy. CONCLUSIONS: These results are the first from controlled pre-clinical experiments that indicate that primaquine pharmacological properties can be modulated upon co-incubation/administration with drugs that are known to interact with CYP 2D6. These results highlight the potential for CYP 2D6-mediated drug-drug interactions with primaquine and indicate that the SSRI/SNRI antidepressants could be used as probe molecules to address the primaquine-CYP 2D6 DDI link in clinical studies. Additionally, CYP 2D6-mediated drug-drug interactions can be considered when examining the possible causes of human primaquine therapy failures.


Subject(s)
Antidepressive Agents/pharmacokinetics , Antimalarials/pharmacokinetics , Cytochrome P-450 CYP2D6/metabolism , Drug Interactions , Primaquine/pharmacokinetics , Serotonin and Noradrenaline Reuptake Inhibitors/pharmacokinetics , Animals , Antidepressive Agents/administration & dosage , Antidepressive Agents/metabolism , Antimalarials/administration & dosage , Antimalarials/metabolism , Cells, Cultured , Disease Models, Animal , Female , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Inhibitory Concentration 50 , Malaria/drug therapy , Male , Mice , Mice, Inbred C57BL , Primaquine/administration & dosage , Primaquine/metabolism , Serotonin and Noradrenaline Reuptake Inhibitors/administration & dosage , Serotonin and Noradrenaline Reuptake Inhibitors/metabolism , Treatment Outcome
15.
Malar J ; 15: 224, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27093859

ABSTRACT

BACKGROUND: The clinical utility of primaquine (PQ), used as a racemic mixture of two enantiomers, is limited due to metabolism-linked hemolytic toxicity in individuals with genetic deficiency in glucose-6-phosphate dehydrogenase. The current study investigated differential metabolism of PQ enantiomers in light of the suggestions that toxicity and efficacy might be largely enantioselective. METHODS: Stable isotope (13)C-labelled primaquine and its two enantiomers (+)-PQ, (-)-PQ were separately incubated with cryopreserved human hepatocytes. Time-tracked substrate depletion and metabolite production were monitored via UHPLC-MS/MS. RESULTS: The initial half-life of 217 and 65 min; elimination rate constants (λ) of 0.19 and 0.64 h(-1); intrinsic clearance (Clint) of 2.55 and 8.49 (µL/min)/million cells, which when up-scaled yielded Clint of 6.49 and 21.6 (mL/min)/kg body mass was obtained respectively for (+)- and (-)-PQ. The extrapolation of in vitro intrinsic clearance to in vivo human hepatic blood clearance, performed using the well-stirred liver model, showed that the rate of hepatic clearance of (+)-PQ was only 45 % that of (-)-PQ. Two major primary routes of metabolism were observed-oxidative deamination of the terminal amine and hydroxylations on the quinoline moiety of PQ. The major deaminated metabolite, carboxyprimaquine (CPQ) was preferentially generated from the (-)-PQ. Other deaminated metabolites including PQ terminal alcohol (m/z 261), a cyclized side chain derivative from the aldehyde (m/z 241), cyclized carboxylic acid derivative (m/z 257), a quinone-imine product of hydroxylated CPQ (m/z 289), CPQ glucuronide (m/z 451) and the glucuronide of PQ alcohol (m/z 437) were all preferentially generated from the (-)-PQ. The major quinoline oxidation product (m/z 274) was preferentially generated from (+)-PQ. In addition to the products of the two metabolic pathways, two other major metabolites were observed: a prominent glycosylated conjugate of PQ on the terminal amine (m/z 422), peaking by 30 min and preferentially generated by (+)-PQ; and the carbamoyl glucuronide of PQ (m/z 480) exclusively generated from (+)-PQ. CONCLUSION: Metabolism of PQ showed enantioselectivity. These findings may provide important information in establishing clinical differences in PQ enantiomers.


Subject(s)
Hepatocytes/metabolism , Primaquine/analogs & derivatives , Primaquine/metabolism , Carbon Isotopes/analysis , Chromatography, High Pressure Liquid , Half-Life , Humans , Kinetics , Stereoisomerism , Tandem Mass Spectrometry
16.
Pharmacol Ther ; 161: 1-10, 2016 05.
Article in English | MEDLINE | ID: mdl-27016470

ABSTRACT

Primaquine is the only antimalarial drug available to clinicians for the treatment of relapsing forms of malaria. Primaquine development and usage dates back to the 1940s and has been administered to millions of individuals to treat and eliminate malaria infections. Primaquine therapy is not without disadvantages, however, as it can cause life threatening hemolysis in humans with glucose-6-phosphate dehydrogenase (G6PD) deficiency. In addition, the efficacy of primaquine against relapsing malaria was recently linked to CYP 2D6 mediated activation to an active metabolite, the structure of which has escaped definitive identification for over 75years. CYP 2D6 is highly polymorphic among various human populations adding further complexity to a comprehensive understanding of primaquine pharmacology. This review aims to discuss primaquine pharmacology in the context of state of the art understanding of CYP 2D6 mediated 8-aminoquinoline metabolic activation, and shed light on the current knowledge gaps of 8-aminoquinoline mechanistic understanding against relapsing malaria.


Subject(s)
Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Primaquine/metabolism , Primaquine/pharmacology , Prodrugs/metabolism , Animals , Antimalarials/adverse effects , Antimalarials/metabolism , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Drug Interactions , Humans , Metabolomics , Polymorphism, Genetic , Primaquine/adverse effects , Primaquine/pharmacokinetics , Prodrugs/adverse effects , Prodrugs/pharmacology
17.
Anal Chem ; 87(12): 6349-56, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26023704

ABSTRACT

Analysis of complex mixtures of proteins by hydrogen exchange (HX) mass spectrometry (MS) is limited by one's ability to resolve the protein(s) of interest from the proteins that are not of interest. One strategy for overcoming this problem is to tag the target protein(s) to allow for rapid removal from the mixture for subsequent analysis. Here we illustrate a new solution involving fluorous conjugation of a retrievable probe. The appended fluorous tag allows for facile immobilization on a fluorous surface. When a target protein is passed over the immobilized probe molecule, it can be efficiently captured and then exposed to a flowing stream of deuterated buffer for hydrogen exchange. The utility of this method is illustrated for a model system of the Elongin BC protein complex bound to a peptide from HIV Vif. Efficient capture is demonstrated, and deuteration when immobilized was identical to deuteration in conventional solution-phase hydrogen exchange MS. Protein captured from a crude bacterial cell lysate could also be deuterated without the need for separate purification steps before HX MS. The advantages and disadvantages of the method are discussed in light of miniaturization and automation.


Subject(s)
Fluorocarbons/chemistry , Hydrogen/chemistry , Molecular Probe Techniques , Proteins/analysis , Hydrocarbons, Fluorinated , Mass Spectrometry , Solutions
18.
Antimicrob Agents Chemother ; 59(7): 3864-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25870069

ABSTRACT

Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations.


Subject(s)
Aminoquinolines/pharmacokinetics , Antimalarials/pharmacokinetics , Cytochrome P-450 CYP2D6/genetics , Aminoquinolines/blood , Animals , Antimalarials/blood , Area Under Curve , Biotransformation , Cytochrome P-450 CYP2D6/metabolism , Half-Life , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Primaquine/pharmacokinetics
19.
Antimicrob Agents Chemother ; 59(4): 2380-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25645856

ABSTRACT

Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity.


Subject(s)
Antimalarials/pharmacokinetics , Cytochrome P-450 CYP2D6/metabolism , Primaquine/pharmacokinetics , Animals , Area Under Curve , Biotransformation , Cytochrome P-450 CYP2D6/genetics , Half-Life , Humans , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
20.
Malar J ; 13: 507, 2014 Dec 17.
Article in English | MEDLINE | ID: mdl-25518709

ABSTRACT

BACKGROUND: Primaquine, currently the only approved drug for the treatment and radical cure of Plasmodium vivax malaria, is still used as a racemic mixture. Clinical use of primaquine has been limited due to haemolytic toxicity in individuals with genetic deficiency in glucose-6-phosphate dehydrogenase. Earlier studies have linked its therapeutic effects to CYP2D6-generated metabolites. The aim of the current study was to investigate the differential generation of the CYP2D6 metabolites by racemic primaquine and its individual enantiomers. METHODS: Stable isotope 13C-labelled primaquine and its two enantiomers were incubated with recombinant cytochrome-P450 supersomes containing CYP2D6 under optimized conditions. Metabolite identification and time-point quantitative analysis were performed using LC-MS/MS. UHPLC retention time, twin peaks with a mass difference of 6, MS-MS fragmentation pattern, and relative peak area with respect to parent compound were used for phenotyping and quantitative analysis of metabolites. RESULTS: The rate of metabolism of (+)-(S)-primaquine was significantly higher (50% depletion of 20 µM in 120 min) compared to (-)-(R)-primaquine (30% depletion) when incubated with CYP2D6. The estimated Vmax (µmol/min/mg) were 0.75, 0.98 and 0.42, with Km (µM) of 24.2, 33.1 and 21.6 for (±)-primaquine, (+)-primaquine and (-)-primaquine, respectively. Three stable mono-hydroxylated metabolites, namely, 2-, 3- and 4-hydroxyprimaquine (2-OH-PQ, 3-OH-PQ, and 4-OH-PQ), were identified and quantified. 2-OH-PQ was preferentially formed from (+)-primaquine in a ratio of 4:1 compared to (-)-primaquine. The racemic (±)-primaquine showed a pattern similar to the (-)-primaquine; 2-OH-PQ accounted for about 15-17% of total CYP2D6-mediated conversion of (+)-primaquine. In contrast, 4-OH-PQ was preferentially formed with (-)-primaquine (5:1), accounting for 22% of the total (-)-primaquine conversion. 3-OH-PQ was generated from both enantiomers and racemate. 5-hydroxyprimaquine was unstable. Its orthoquinone degradation product (twice as abundant in (+)-primaquine compared to (-)-primaquine) was identified and accounted for 18-20% of the CYP2D6-mediated conversion of (+)-primaquine. Other minor metabolites included dihydroxyprimaquine species, two quinone-imine products of dihydroxylated primaquine, and a primaquine terminal alcohol with variable generation from the individual enantiomers. CONCLUSION: The metabolism of primaquine by human CYP2D6 and the generation of its metabolites display enantio-selectivity regarding formation of hydroxylated product profiles. This may partly explain differential pharmacologic and toxicologic properties of primaquine enantiomers.


Subject(s)
Antimalarials/metabolism , Cytochrome P-450 CYP2D6/metabolism , Primaquine/metabolism , Antimalarials/chemistry , Chromatography, Liquid , Humans , Isotope Labeling , Kinetics , Plasmodium vivax , Primaquine/chemistry , Stereoisomerism , Substrate Specificity , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...