Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Neurol ; 287(Pt 2): 216-224, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27453480

ABSTRACT

Pompe disease is an inherited disorder due to a mutation in the gene that encodes acid α-glucosidase (GAA). Children with infantile-onset Pompe disease develop progressive hypotonic weakness and cardiopulmonary insufficiency that may eventually require mechanical ventilation (MV). Our team conducted a first in human trial of diaphragmatic gene therapy (AAV1-CMV-GAA) to treat respiratory neural dysfunction in infantile-onset Pompe. Subjects (aged 2-15years, full-time MV: n=5, partial/no MV: n=4) underwent a period of preoperative inspiratory muscle conditioning exercise. The change in respiratory function after exercise alone was compared to the change in function after intramuscular delivery of AAV1-CMV-GAA to the diaphragm with continued exercise. Since AAV-mediated gene therapy can reach phrenic motoneurons via retrograde transduction, we hypothesized that AAV1-CMV-GAA would improve dynamic respiratory motor function to a greater degree than exercise alone. Dependent measures were maximal inspiratory pressure (MIP), respiratory responses to inspiratory threshold loads (load compensation: LC), and physical evidence of diaphragm activity (descent on MRI, EMG activity). Exercise alone did not change function. After AAV1-CMV-GAA, MIP was unchanged. Flow and volume LC responses increased after dosing (p<0.05 to p<0.005), but only in the subjects with partial/no MV use. Changes in LC tended to occur on or after 180days. At Day 180, the four subjects with MRI evidence of diaphragm descent had greater maximal voluntary ventilation (p<0.05) and tended to be younger, stronger, and use fewer hours of daily MV. In conclusion, combined AAV1-CMV-GAA and exercise training conferred benefits to dynamic motor function of the diaphragm. Children with a higher baseline neuromuscular function may have greater potential for functional gains.


Subject(s)
Diaphragm/physiology , Exercise Therapy , Genetic Therapy , Glycogen Storage Disease Type II/complications , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Adenoviridae/genetics , Adenoviridae/metabolism , Adolescent , Child , Child, Preschool , Electromyography , Female , Glycogen Storage Disease Type II/diagnostic imaging , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/therapy , Humans , Magnetic Resonance Imaging , Male , Muscle, Skeletal/physiopathology , Prospective Studies , Respiratory Insufficiency/diagnostic imaging , Treatment Outcome , alpha-Glucosidases/genetics , alpha-Glucosidases/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL