Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Arch ; 77(4): 258-262, 2023.
Article in English | MEDLINE | ID: mdl-37876558

ABSTRACT

Background: During pregnancy, pregnant women are susceptible to malaria, contributing significantly to maternal and infant mortality. Objective: This research was conducted to study the effect of Plasmodium berghei infection in pregnant mice on fetal growth retardation through placental cell apoptosis and the change of local vascularization. Methods: Eighteen pregnant Balb/c strain mice resulting from simultanously mating were divided into two groups those were nine pregnant mice used as non infected group and nine pregnant mice infected with Plasmodium berghei on day 9th post mating used as infected group respectively. On day 15th of post mating, all of the pregnant mice were killed. Fetal weights were measured using analytic balance. Apoptosis of placental cells and VEGF expression in the placental tissue were measured using immunohistochemistry. Results: Result showed that there was sequestration of parasite-infected red blood cells (PRBCs) in intervillous space. Statistical analysis showed that the fetal weights in infected pregnant mice group was significantly lower than non infected one (p = 0.01), and the placental cell apoptosis in placental tissue of infected pregnant mice was significantly higher than the non infected one (p=0.00).There was also a significant difference on VEGF expression between infected group and non infected group (p= 0,00). Conclusion: Plasmodium berghei infection in pregnant Balb/c mice can cause fetal growth retardation due to high of placental cell apoptosis and low VEGF expression.


Subject(s)
Malaria , Pregnancy Complications, Parasitic , Infant , Pregnancy , Female , Humans , Mice , Animals , Placenta , Vascular Endothelial Growth Factor A , Fetal Growth Retardation , Fetal Weight , Pregnancy Complications, Parasitic/metabolism , Malaria/metabolism , Mice, Inbred BALB C , Apoptosis
2.
Biomed Res Int ; 2020: 6135696, 2020.
Article in English | MEDLINE | ID: mdl-31993450

ABSTRACT

Malaria is one of the life-threatening diseases in the world. The spread of resistance to antimalarial drugs is a major challenge, and resistance to artemisinin has been reported in the Southeast Asian region. In the previous study, the active compound of Streptomyces hygroscopicus subsp. Hygroscopicus (S. hygroscopicus), eponemycin, has been shown to have antimalarial effects. To further analyze the effects of other active compounds on the Plasmodium parasite, identifying and analyzing the effectiveness of compounds contained in S. hygroscopicus through instrumentation of liquid chromatography/mass spectrometry (LC/MS) and in silico studies were very useful. This study aimed at identifying other derivative compounds from S. hygroscopicus and screening the antimalarial activity of the compound by assessing the binding affinity, pharmacokinetic profile, and bond interaction. The derivative compounds were identified using LC/MS. Protein targets for derivative compounds were found through literature studies, and the results of identification of compounds and protein targets were reconstructed into three-dimensional models. Prediction of pharmacokinetic profiles was carried out using Swiss ADME. Screening of protein targets for the derivative compound was carried out using the reverse molecular docking method. Analyzing bond interaction was done by LigPlot. One compound from S. hygroscopicus, i.e., 6,7-dinitro-2-[1, 2, 4]triazole-4-yl-benzo[de]isoquinoline-1,3-dione, was successfully identified using LC/MS. This compound was an isoquinoline derivative compound. Through literature studies with inclusion criteria, thirteen protein targets were obtained for reverse molecular docking. This isoquinoline derivative had the potential to bind to each protein target. The pharmacokinetic profile showed that this compound had the drug-likeness criteria. Conclusion. 6,7-Dinitro-2-[1, 2, 4]triazole-4-yl-benzo[de]isoquinoline-1,3-dione has antimalarial activity as shown by reverse molecular docking studies and pharmacokinetic profiles. The best inhibitory ability of compounds based on bond affinity is with adenylosuccinate synthetase.


Subject(s)
Antimalarials/therapeutic use , Isoquinolines/therapeutic use , Malaria/drug therapy , Plasmodium/drug effects , Streptomyces/chemistry , Antimalarials/isolation & purification , Antimalarials/pharmacokinetics , Isoquinolines/isolation & purification , Isoquinolines/pharmacokinetics , Ligands , Malaria/parasitology , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...