Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; : e2400506, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712468

ABSTRACT

Curcumin is a natural product found in the rhizome of Curcuma longa (L.) and other Curcuma spp. As a lipophilic molecule, it has greater affinity for polar, non-polar, alkaline, or extremely acidic organic solvents. Several studies indicate that curcumin has several benefits for human health, for example, against degenerative diseases, cancer, and infectious diseases. To obtain a quality product with nutraceutical properties, it is necessary to know its physicochemical characteristics and preserve it from cultivation until ingestion by the human. However, its low solubility leads to low absorption; in this context, nanotechnological systems can contribute to increase curcumin bioavailability. This review aims to highlight important issues in all stages that curcumin goes through: from aspects related to its extraction to its association with nanotechnology. Although curcumin extraction process is already well established, it is possible to observe more and more research focused on increasing yield and being more environmentally friendly. Further, curcumin's low absorption is notable due to its physicochemical characteristics, mainly due to its low aqueous solubility. However, its association with nanotechnology shows to be promising and an increasingly growing trend because the use of this "Indian solid gold" is the hope of many patients.

2.
J Fungi (Basel) ; 10(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38667924

ABSTRACT

The Candida auris species is a multidrug-resistant yeast capable of causing systemic and lethal infections. Its virulence and increase in outbreaks are a global concern, especially in hospitals where outbreaks are more recurrent. In many cases, monotherapy is not effective, and drug combinations are opted for. However, resistance to antifungals has increased over the years. In view of this, nanoemulsions (NEs) may represent a nanotechnology strategy in the development of new therapeutic alternatives. Therefore, this study developed a co-encapsulated nanoemulsion with amphotericin B (AmB) and micafungin (MICA) (NEMA) for the control of infections caused by C. auris. NEs were developed in previous studies. Briefly, the NEs were composed of a mixture of 10% sunflower oil and cholesterol as the oil phase (5:1), 10% Polyoxyethylene (20) cetyl ether (Brij® 58) and soy phosphatidylcholine as surfactant/co-surfactant (2:1), and 80% PBS as the aqueous phase. The in vivo assay used BALB/c mice weighing between 25 and 28 g that were immunosuppressed (CEUA/FCF/CAr n° 29/2021) and infected with Candida auris CDC B11903. The in vivo results show the surprising potentiate of the antifungal activity of the co-encapsulated drugs in NE, preventing yeast from causing infection in the lung and thymus. Biochemical assays showed a higher concentration of liver and kidney enzymes under treatment with AmB and MICAmB. In conclusion, this combination of drugs to combat the infection caused by C. auris can be considered an efficient therapeutic option, and nanoemulsions contribute to therapeutic potentiate, proving to be a promising new alternative.

3.
Eur J Pharm Biopharm ; 199: 114280, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588828

ABSTRACT

Helicobacter pylori (H. pylori) is a microorganism directly linked to severe clinical conditions affecting the stomach. The virulence factors and its ability to form biofilms increase resistance to conventional antibiotics, growing the need for new substances and strategies for the treatment of H. pylori infection. The trans-resveratrol (RESV), a bioactive polyphenol from natural sources, has a potential activity against this gastric pathogen. Here, Chitosan nanoparticles (NP) containing RESV (RESV-NP) were developed for H. pylori management. The RESV-NP were prepared using the ionic gelation method and characterized by Dynamic Light Scattering (DLS), Nanoparticle Tracking Analysis (NTA) and, Cryogenic Transmission Electron Microscopy (Cryo - TEM). The encapsulation efficiency (EE) and in vitro release rate of RESV were quantified using high-performance liquid chromatography (HPLC). RESV-NP performance against H. pylori was evaluated by the quantification of the minimum inhibitory/bactericidal concentrations (MIC/MBC), time to kill, alterations in H. pylori morphology in its planktonic form, effects against H. pylori biofilm and in an in vitro infection model. RESV-NP cytotoxicity was evaluated against AGS and MKN-74 cell lines and by hemolysis assay. Acute toxicity was tested using Galleria mellonella model assays. RESV-NP showed a spherical shape, size of 145.3 ± 24.7 nm, polydispersity index (PDI) of 0.28 ± 0.008, and zeta potential (ZP) of + 16.9 ± 1.81 mV in DLS, while particle concentration was 3.12 x 1011 NP/mL (NTA). RESV-NP EE was 72 %, with full release within the first 5 min. In microbiological assays, RESV-NP presented a MIC/MBC of 3.9 µg/mL, a time to kill of 24 h for complete eradication of H. pylori. At a concentration of 2xMIC (7.8 µg/mL), RESV-NP completely eradicated the H. pylori biofilm, and in an in vitro infection model, RESV-NP (4xMIC - 15.6 µg/mL) showed a significant decrease in bacterial load (1 Log10CFU/mL) when compared to the H. pylori J99 control. In addition, they did not demonstrate a toxic character at MIC concentration for both cell lines. The use of the RESV-NP with mucoadhesion profile is an interesting strategy for oral administration of substances targeting gastric disorders, linked to H. pylori infections.


Subject(s)
Anti-Bacterial Agents , Biofilms , Chitosan , Helicobacter Infections , Helicobacter pylori , Microbial Sensitivity Tests , Nanoparticles , Resveratrol , Resveratrol/administration & dosage , Resveratrol/pharmacology , Helicobacter pylori/drug effects , Chitosan/chemistry , Nanoparticles/chemistry , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Humans , Animals , Drug Carriers/chemistry , Drug Liberation , Stilbenes/pharmacology , Stilbenes/administration & dosage , Stilbenes/chemistry , Particle Size
4.
Beilstein J Nanotechnol ; 15: 104-114, 2024.
Article in English | MEDLINE | ID: mdl-38264062

ABSTRACT

Plant-based insecticides offer advantages such as negligible residual effects, reduced risks to both humans and the environment, and immunity to resistance issues that plague conventional chemicals. However, the practical use of monoterpenes in insect control has been hampered by challenges including their poor solubility and stability in aqueous environments. In recent years, the application of nanotechnology-based formulations, specifically nanoemulsions, has emerged as a prospective strategy to surmount these obstacles. In this study, we developed and characterized nanoemulsions based on cymene and myrcene and assessed their toxicity both in vitro using human keratinocytes (HaCAT) cells and in an in vivo model involving Galleria mellonella larvae. Additionally, we investigated the insecticidal efficacy of monoterpenes against the mosquito Aedes aegypti, the primary dengue vector, via larval bioassay. Employing a low-energy approach, we successfully generated nanoemulsions. The cymene-based nanoemulsion exhibited a hydrodynamic diameter of approximately 98 nm and a zeta potential of -25 mV. The myrcene-based nanoemulsion displayed a hydrodynamic diameter of 118 nm and a zeta potential of -20 mV. Notably, both nanoemulsions demonstrated stability over 60 days, accompanied by controlled release properties and low toxicity towards HaCAT cells and Galleria mellonella larvae. Moreover, the nanoemulsions exhibited significant lethality against third-instar Aedes aegypti larvae at a concentration of 50 mg/L. In conclusion, the utilization of nanoemulsions encapsulating cymene and myrcene presents a promising avenue for overcoming the limitations associated with poor solubility and stability of monoterpenes. This study sheds light on the potential of the nanoemulsions as effective and environmentally friendly insecticides in the ongoing battle against mosquito-borne diseases.

5.
Microorganisms ; 11(7)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37512799

ABSTRACT

Candida auris is an emerging yeast of worldwide interest due to its antifungal resistance and mortality rates. The aim of this study was to analyse the in vitro and in vivo antifungal activity of a nanoemulsion loaded with amphotericin B (NEA) against planktonic cells and biofilm of C. auris clinical isolates belonging to four different clades. In vivo assays were performed using the Galleria mellonella model to analyse antifungal activity and histopathological changes. The in vitro results showed that NEA exhibited better antifungal activity than free amphotericin B (AmB) in both planktonic and sessile cells, with >31% inhibition of mature biofilm. In the in vivo assays, NEA demonstrated superior antifungal activity in both haemolymph and tissue. NEA reduced the fungal load in the haemolymph more rapidly and with more activity in the first 24 h after infection. The histological analysis of infected larvae revealed clusters of yeast, immune cells, melanisation, and granulomas. In conclusion, NEA significantly improved the in vitro and in vivo antifungal activity of AmB and could be considered a promising therapy for C. auris infections.

6.
Nanomedicine (Lond) ; 18(10): 789-801, 2023 04.
Article in English | MEDLINE | ID: mdl-37199266

ABSTRACT

Aims: The development of rapamycin (RAP) and resveratrol (RSV) coloaded liposomes (RAP-RSV-LIP) for breast cancer therapy. Materials & methods: Liposomes were prepared using a high-pressure homogenization technique and evaluated according to their physicochemical characteristics, cellular uptake and cytotoxicity against tumoral and normal cells. Results & conclusion: The RAP-RSV-LIP showed negative surface charge, size around 100 nm, low polydispersity and high encapsulation efficiency for RAP and RSV (58.87 and 63.22%, respectively). RAP-RSV-LIP showed great stability over 60 days and a prolonged drug-release profile. In vitro studies indicated that RAP-RSV-LIP were internalized in an estrogen receptor-positive human breast cancer cell line (MCF-7, 34.2%) and improved cytotoxicity when compared with free drugs. Therefore RAP-RSV-LIP showed great antitumoral potential against breast cancer cells.


Subject(s)
Breast Neoplasms , Liposomes , Humans , Female , Resveratrol/pharmacology , Liposomes/therapeutic use , Sirolimus/pharmacology , Sirolimus/therapeutic use , Breast Neoplasms/drug therapy , Antioxidants/therapeutic use , Cell Line, Tumor
7.
Int J Biol Macromol ; 232: 123351, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36702229

ABSTRACT

Aiming to highlight the valorization of the natural products and the green synthesis processes, this work describes the development of a nanoscale system based on the use of alginate to encapsulate a blend of oils (vegetable and essential oils), not previously reported, with antibacterial and antioxidant actions. The study shows the influence of the polymer and surfactant concentrations on the physicochemical properties of the nanoparticles. The formulations were characterized by DLS, zeta potential, efficiency of encapsulation and stability. In addition, the antioxidant and antimicrobial properties of the systems were evaluated using the DPPH method and disk diffusion assays, respectively. The shelf life was studied by coating fruits and seeds. The results showed that the nanostructured system was stable, the efficiency of encapsulation was high and the nanoparticles size range was about 200-400 nm. The coating of fruits and seeds showed that the system was capable of inhibiting the growth of microorganisms and delaying the fruit maturation, indicating its potential for prolonging the shelf-life of fresh food.


Subject(s)
Nanoparticles , Oils, Volatile , Fruit/chemistry , Plant Oils/pharmacology , Plant Oils/analysis , Antioxidants/pharmacology , Antioxidants/analysis , Food Preservation/methods , Alginates , Seeds , Oils, Volatile/chemistry , Nanoparticles/chemistry , Nanotechnology
8.
Med Mycol ; 61(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36427066

ABSTRACT

Fungi are becoming increasingly resistant, especially the new strains. Therefore, this work developed nanoemulsions (NE) containing micafungin (MICA), in order to improve its action against infections caused by Candida auris. The NEs were composed of the surfactants polyoxyethylene (20) cetyl ether (Brij 58®)/soy phosphatidylcholine at 10%, sunflower oil/cholesterol at 10%, and 80% PBS. The NEs were characterized by Dynamic Light Scattering (DLS). For the microbiological in vitro evaluation the determination of the minimum inhibitory concentration (MIC), ergosterol/sorbitol, time kill and biofilms tests were performed. Additionally, the antifungal activity was also evaluated in a Galleria mellonella model. The same model was used in order to evaluate acute toxicity. The NE showed a size of ∼ 42.12 nm, a polydispersion index (PDI) of 0.289, and a zeta potential (ZP) of -3.86 mV. NEM had an average size of 41.29 nm, a PDI of 0.259, and a ZP of -4.71 mV. Finally, both nanoemulsions showed good stability in a storage period of 3 months. Although NEM did not show activity in planktonic cells, it exhibited action against biofilm and in the in vivo infection model. In the alternative in vivo model assay, it was possible to observe that both, NEM and free MICA at 0.2 mg/l, was effective against the infection, being that NEM presented a better action. Finally, NEM and free MICA showed no acute toxicity up to 4 mg/l. NEM showed the best activities in in vitro in mature antibiofilm and in alternative in vivo models in G. mellonella. Although, NEs showed to be attractive for MICA transport in the treatment of infections caused by C. auris in vitro and in vivo studies with G. mellonella, further studies should be carried out, in mice, for example.


Candida auris is a fungus that can cause infections in the human body. As it is a microorganism with a high potential for resistance, it is extremely important to develop new therapeutic alternatives. Thus, nanotechnology, the science that studies materials with extremely small sizes, can be considered a promising method in the treatment of these infections.


Subject(s)
Antifungal Agents , Ergosterol , Animals , Mice , Micafungin/pharmacology , Antifungal Agents/pharmacology , Microbial Sensitivity Tests/veterinary , Biofilms
9.
Molecules ; 27(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36500650

ABSTRACT

Commonly found colonizing the human microbiota, Candida albicans is a microorganism known for its ability to cause infections, mainly in the vulvovaginal region known as vulvovaginal candidiasis (VVC). This pathology is, in fact, one of the main C. albicans clinical manifestations, changing from a colonizer to a pathogen. The increase in VVC cases and limited antifungal therapy make C. albicans an increasingly frequent risk in women's lives, especially in immunocompromised patients, pregnant women and the elderly. Therefore, it is necessary to develop new therapeutic options, especially those involving natural products associated with nanotechnology, such as lycopene and mesoporous silica nanoparticles. From this perspective, this study sought to assess whether lycopene, mesoporous silica nanoparticles and their combination would be an attractive product for the treatment of this serious disease through microbiological in vitro tests and acute toxicity tests in an alternative in vivo model of Galleria mellonella. Although they did not show desirable antifungal activity for VVC therapy, the present study strongly encourages the use of mesoporous silica nanoparticles impregnated with lycopene for the treatment of other human pathologies, since the products evaluated here did not show toxicity in the in vivo test performed, being therefore, a topic to be further explored.


Subject(s)
Candidiasis, Vulvovaginal , Fluconazole , Female , Humans , Pregnancy , Aged , Candida , Silicon Dioxide/therapeutic use , Lycopene/pharmacology , Lycopene/therapeutic use , Candidiasis, Vulvovaginal/drug therapy , Candidiasis, Vulvovaginal/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida albicans , Microbial Sensitivity Tests
10.
Adv Colloid Interface Sci ; 307: 102746, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35969965

ABSTRACT

Pharmaceutical nanotechnology has become a trend with incalculable advantages in the applicability of systems in the controlled, safe and effective release of drugs. Among the nanotechnological nanoparticles, the mesoporous silica nanoparticles stand out, a system with significant biocompatibility, good physical chemical stability, greater surface contact area with desirable and adjustable pore structure. Once developed and well defined, these pores can carry drugs and control their release. However, to create this type of nanoparticle is essencial to use surfactants since they act as pore template. Among the most important surfactants, cetyltrimethylammonium bromide (CTAB) highlights, a quaternary ammonium compound widely used as a surfactant in the synthesis of mesoporous silica nanoparticles (MSNs), hollow mesoporous silica (HMSNs) and core-shell MSNs. However, for achieving good results of drug-loaded pores it is necessary to remove CTAB by extraction techniques, which provides pores formation throughout the silica and the incorporation of molecules. During and after the removal process, it is possible that CTAB residues remains inside the pores, despide several removal processes are described as efficient in the complete removal of surfactants. In turn, the presence of CTAB residues can be advantageous, especially when considering its antimicrobial activity. Meanwhile, it should be noted that the presence of CTAB may present high toxicity risks. This review seeks to explore not only general aspects of the use of CTAB in the synthesis of MSNs, but also to assess its toxicity in prokaryotic and eukaryotic cells, in order to determine whether CTAB residues are acceptable in MSNs that will be used as drug delivery systems for further in vivo and clinical assays.


Subject(s)
Nanoparticles , Silicon Dioxide , Cetrimonium , Porosity , Surface-Active Agents
11.
Phytother Res ; 36(7): 2710-2745, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35643985

ABSTRACT

Fungal infections are one of the main public health problems, especially in immunocompromised patients, nosocomial environments, patients with chronic diseases, and transplant recipients. These diseases are increasingly frequent and lethal because the microorganism has a high capacity to acquire resistance to available therapy. The main resistance factors are the emergence of new strains and the uncontrolled use of antifungals. It is, therefore, important to develop new methods that contribute to combating fungal diseases in the clinical area. Natural products have considerable potential for the development of new drugs with antifungal activity, mainly due to their biocompatibility and low toxic effect. This promising antimicrobial activity of natural products is mainly due to the presence of flavonoids, terpenes, and quinones, which explains their antifungal potential. Pharmaceutical nanotechnology has been explored to enhance the delivery, selectivity, and clinical efficacy of these products. Nanotechnological systems provide a safe and selective environment for various substances, such as natural products, improving antifungal activity. However, further safety experiments (in vivo or clinical trials) need to be carried out to prove the therapeutic action of natural products, since they may have undesirable, toxic, and mutagenic effects. Therefore, this review article addresses the main nanotechnological methods using natural products for effective future treatment against the main fungal diseases.


Subject(s)
Biological Products , Mycoses , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Humans , Mycoses/drug therapy , Mycoses/microbiology , Nanomedicine , Terpenes/therapeutic use
12.
Crit Rev Anal Chem ; 52(3): 555-576, 2022.
Article in English | MEDLINE | ID: mdl-32880190

ABSTRACT

Amphotericin B (AmB) is an important antifungal agent available in the clinical practice with the action mechanism related to the inhibition of ergosterol molecule present in the fungal cell wall. Given this, in order to expand AmB knowledge, this review article gathers important information of the AmB physical, chemical, and biological properties. In addition, the main analytical methods for quantifying and determining the AmB were also reported in this review, such as high-performance liquid chromatography (HPLC), liquid chromatography, tandem mass spectrophotometry (LC-MS/MS), immunoenzymatic assay (ELISA), capillary zone electrophoresis (CE) stands out and among others. Based in this review article, the scientific community will have important information to choose the best method for analysis in their scientific or clinical research, providing greater security and reliability in the obtained results.


Subject(s)
Amphotericin B , Tandem Mass Spectrometry , Amphotericin B/chemistry , Amphotericin B/pharmacology , Chromatography, Liquid , Drug Compounding , Reproducibility of Results
13.
Planta Med ; 88(5): 405-415, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33511621

ABSTRACT

Myrcia bella is a medicinal plant used for the treatment of diabetes, hemorrhages, and hypertension in Brazilian folk medicine. Considering that plant extracts are attractive sources of new drugs, the aim of the present study was to verify the influence of incorporating 70% hydroalcoholic of M. bella leaves in nanostructured lipid systems on the mutagenic and antifungal activities of the extract. In this work, we evaluated the antifungal potential of M. bella loaded on the microemulsion against Candida sp for minimum inhibitory concentration, using the microdilution technique. The system was composed of polyoxyethylene 20 cetyl ether and soybean phosphatidylcholine (10%), grape seed oil, cholesterol (10%: proportion 5/1), and purified water (80%). To investigate the mutagenic activity, the Ames test was used with the Salmonella Typhimurium tester strains. M. bella, either incorporated or free, showed an important antifungal effect against all tested strains. Moreover, the incorporation surprisingly inhibited the mutagenicity presented by the extract. The present study attests the antimicrobial properties of M. bella extract, contributing to the search for new natural products with biological activities and suggesting caution in its use for medicinal purposes. In addition, the results emphasize the importance of the use of nanotechnology associated with natural products as a strategy for the control of infections caused mainly by the genus Candida sp.


Subject(s)
Myrtaceae , Plants, Medicinal , Antifungal Agents/pharmacology , Mutagens , Plant Extracts/pharmacology
14.
Sci Total Environ ; 807(Pt 3): 151023, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34662607

ABSTRACT

Galleria mellonella is a model that uses adult larvae to assess the prophylactic, therapeutic, and acute toxic potential of substances. Given their benefits, G. mellonella models are being employed in investigations of systemic infections caused by highly resistant microorganisms. Among the multiresistant microorganisms, we highlight Candida auris, a yeast with high mortality potential and resistance. Among the potential drugs, amphotericin B (AmB) stands out; however, microbial resistance episodes and side effects caused by low selectivity have been observed. The incorporation of AmB into a nanoemulsion (NE) can contribute to the control of C. auris infections and resistance as well as decrease the side effects of this drug. This study aimed to develop AmB-loaded NE (NEA) and evaluate its antifungal action against C. auris in G. mellonella. NEs were obtained by using sunflower oil and cholesterol as the oily phase, polyoxyethylene 20 cetyl ether (Brij® 58) and soy phosphatidylcholine as the surfactant system, and PBS buffer as the aqueous phase. An alternative in vivo assay with G. mellonella for acute toxicity and infection was performed using adult stage larvae (200 mg to 400 mg). According to the obtained results, NE and NEA exhibited sizes of 43 and 48 nm, respectively. The PDI was 0.285 and 0.389 for NE and NEA, respectively. The ZP showed electronegativity for both systems, with -3.77 mV and -3.80 mV for NE and NEA, respectively. Acute toxicity showed that free AmB had greater acute toxicity potential than NEA. The survival assay showed high larval viability. NEA had a better antifungal profile against systemic infection in G. mellonella. It is concluded that the alternative model proved to be an efficient in vivo assay to determine the toxicity and evaluate the therapeutic property of free AmB and NEA in systemic infections caused by C. auris.


Subject(s)
Candidiasis, Invasive , Moths , Amphotericin B/toxicity , Animals , Antifungal Agents/toxicity , Candida auris
15.
Int J Pharm ; 603: 120706, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33991597

ABSTRACT

The rate of infections caused by resistant bacteria to the antimicrobials available for human use grows exponentially every year, which generates major impacts on human health and the world economy. In the last two decades, human beings can witness the expressive increase in the Science and Technology worldwide, and areas such as Health Sciences have benefited from these advances in favor of human health, such as the advent of Pharmaceutical Nanotechnology as an important approach applied for bacterial infections treatment with resistance profile to available antibiotics. This review of the scientific literature brings the applicability of nanotechnology-based lipid systems as an innovative tool in the improvement of bacterial infections treatment. Important studies involving the use of liposomes, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, microemulsions and lipid nanocapsules were verified in the period from 2000 to 2020, where important scientific results were found and will serve as a basis for the use of these systems to remain in constant updating. This manuscript shows the use of these drug delivery systems as potential vehicles for antibacterial compounds, which opens a new hope in the complement of the antibacterial therapeutic arsenal. Important studies developed in the last 20 years are present in this review, and thus guarantees an update on the use of these drug delivery systems for researchers from different areas of Health Sciences.


Subject(s)
Drug Delivery Systems , Nanoparticles , Bacteria , Drug Carriers , Humans , Lipids , Nanotechnology
16.
Crit Rev Microbiol ; 47(4): 435-460, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33725462

ABSTRACT

Due to the high adaptability of Helicobacter pylori and the low targeting specificity of the drugs normally used in pharmacological therapy, the strains are becoming increasingly resistant to these drugs, making it difficult to eradicate the infection. Thus, the search for new therapeutic approaches has been considered urgent. The incorporation of drugs in advanced drug delivery systems, such as nano and microparticles, would allow the improvement of the retention time in the stomach and the prolongation of drug release rates at the target site. Because of this, the present review article aims to highlight the use of micro and nanoparticles as important technological tools for the treatment of H. pylori infections, focussing on the main nanotechnological systems, including nanostructured lipid carriers, liposomes, nanoemulsion, metallic nanoparticles, and polymeric nanoparticles, as well as microtechnological systems such as gastroretentive dosage forms, among them mucoadhesive, magnetic and floating systems were highlighted.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Delivery Systems/methods , Helicobacter Infections/drug therapy , Animals , Drug Delivery Systems/instrumentation , Helicobacter Infections/microbiology , Helicobacter pylori/drug effects , Helicobacter pylori/genetics , Helicobacter pylori/physiology , Humans , Nanoparticles/chemistry
17.
Crit Rev Anal Chem ; 51(4): 312-328, 2021.
Article in English | MEDLINE | ID: mdl-32064916

ABSTRACT

Micafungin is characterized as one of the most active available drugs for candidemia treatment; however, their use is also associated in prophylaxis protocols in cases of invasive fungal infections. The use of this drug is widely appreciated in the medical field due to be the most active echinocandin available for invasive fungal infections. In order to provide important parameters related to the chemical, physical, biological and therapeutic characteristics, this review article gathers important research results that demonstrate the biological potential of this drug, as well as to present analytical methods that can be used to determine the antifungal potential and a monitoring of administered dosages. Important studies about the methods most commonly used in biological activity evaluation and determination/quantification by analytical methods are provided in this review article. With the data provided, the scientific community will have the possibility to choose the analytical methods and biological that can be employed in clinical and scientific research to provide greater safety and reliability of the results to be found.


Subject(s)
Antifungal Agents/analysis , Antifungal Agents/metabolism , Candida/drug effects , Candidiasis/drug therapy , Micafungin/analysis , Micafungin/metabolism , Antifungal Agents/administration & dosage , Antifungal Agents/adverse effects , Aspergillus fumigatus/drug effects , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Drug Resistance, Fungal , Echinocandins/pharmacology , Electrophoresis, Capillary , Humans , Micafungin/administration & dosage , Micafungin/adverse effects , Solubility , Tandem Mass Spectrometry , Treatment Outcome
18.
Crit Rev Microbiol ; 46(5): 508-547, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32795108

ABSTRACT

The crescent number of cases of candidiasis and the increase in the number of infections developed by non-albicans species and by multi-resistant strains has taken the attention of the scientific community, which has been searching for new therapeutic alternatives. Among the alternatives found the use of nanosystems for delivery of drugs already commercialized and new biomolecules have grown, in order to increase stability, solubility, optimize efficiency and reduce adverse effects. In view of the growing number of studies involving technological alternatives for the treatment of candidiasis, the present review came with the intention of gathering studies from the last two decades that used nanotechnology for the treatment of candidiasis, as well as analysing them critically and pointing out the future perspectives for their application with this purpose. Different studies were considered for the development of this review, addressing nanosystems such as metallic nanoparticles, mesoporous silica nanoparticles, polymeric nanoparticles, liposomes, nanoemulsion, microemulsion, solid lipid nanoparticle, nanostructured lipid carrier, lipidic nanocapsules and liquid crystals; and different clinical presentations of candidiasis. As a general overview, nanotechnology has proven to be an important ally for the treatment against the diversity of candidiasis found in the clinic, whether in increasing the effectiveness of commercialized drugs and reducing their adverse effects, as well as allowing exploring more effectively properties therapeutics of new biomolecules.


Subject(s)
Antifungal Agents/therapeutic use , Candidiasis/drug therapy , Nanoparticles/therapeutic use , Animals , Antifungal Agents/chemistry , Antifungal Agents/history , Candidiasis/history , History, 20th Century , History, 21st Century , Humans , Nanoparticles/chemistry , Nanoparticles/history , Nanotechnology/history
19.
Int J Pharm ; 589: 119780, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32860856

ABSTRACT

Systemic infections is one of the major causes of mortality worldwide, and a shortage of drug approaches applied for the rapid and necessary treatment contribute to increase the levels of death in affected patients. Several drug delivery systems based in nanotechnology such as metallic nanoparticles, liposomes, nanoemulsion, microemulsion, polymeric nanoparticles, solid lipid nanoparticles, dendrimers, hydrogels and liquid crystals can contribute in the biological performance of active substances for the treatment of microbial diseases triggered by fungi, bacteria, virus and parasites. In the presentation of these statements, this review article present and demonstrate the effectiveness of these drug delivery systems for the treatment of systemic diseases caused by several microorganisms, through a review of studies on scientific literature worldwide that contributes to better information for the most diverse professionals from the areas of health sciences. The studies demonstrated that the drug delivery systems described can contribute to the therapeutic scenario of these diseases, being classified as safe, active platforms and with therapeutic versatility.


Subject(s)
Nanoparticles , Nanotechnology , Drug Delivery Systems , Humans , Lipids , Liposomes , Polymers
20.
Article in English | MEDLINE | ID: mdl-30733813

ABSTRACT

Trees of the Copaifera genus are native to the tropical regions of Latin America and Western Africa. Copaifera sp is widely used as a popular medicine and it has various ethnopharmacological indications, including gonorrhea, bronchitis, asthma, skin ulcers, ulcers, sore throat, uterine infections, general inflammations, cancer, and leishmanioses. Kaurenoic acid is a naturally occurring diterpene found in Copaifera and has been used as an anti-inflammatory, treatment of ulcer, leishmaniasis, and cancer. Bearing in mind the fact that the Ames test is an excellent tool to assess the safety of extracts, oils, and phytochemicals isolated from medicinal plants, from it, we evaluate the mutagenic potential of four species, between oleoresins (C. oblongifolia; C. langsdorffii) and leaves extracts (C. lucens; C. multijuga), of the Copaifera genus and also of kaurenoic acid, which is one of its major compounds. The results showed that the Copaifera spp. and kaurenoic acid did not induce an increase in the number of revertant colonies, without mutagenic effect in experiments, in the all concentrations evaluated by Ames test. The results obtained in our study support the safe use of the Copaifera genus medicinal plants selected and of kaurenoic acid.

SELECTION OF CITATIONS
SEARCH DETAIL
...