Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Ter ; 174(Suppl 2(6)): 11-20, 2023.
Article in English | MEDLINE | ID: mdl-37994744

ABSTRACT

Background: Thyroid cancer, a heterogeneous disease originating from the thyroid gland, stands as the predominant endocrine malignan-cy worldwide. Despite advances in diagnosis and treatment, some patients still experience recurrence and mortality, which highlights the need for more personalized approaches to treatment. Omics sciences, encompassing genomics, transcriptomics, proteomics, and metabolomics, offer a high-throughput and impartial methodology for investigating the molecular signatures of thyroid cancer. Methods: In the course of this review, we have adopted a focu-sed research strategy, meticulously selecting the most pertinent and emblematic articles related to the topic. Our methodology included a systematic examination of the scientific literature to guarantee a thorough and precise synthesis of the existing sources. Results: These techniques enable the identification of molecular markers that can aid in diagnosis, prognosis, and treatment selection. As an illustration, through genomics studies, numerous genetic alterations commonly discovered in thyroid cancer have been identified, such as mutations in the BRAF and RAS genes. Through transcriptomics studies, distinctively expressed genes in thyroid cancer have been uncovered, playing roles in diverse biological processes, including cell proliferation, invasion, and metastasis. These genes can serve as potential targets for novel therapies. Proteomics studies have unveiled differentially expressed proteins intricately involved in thyroid cancer pathogenesis, presenting promising biomarkers for early detection and disease progression monitoring. Metabolomics studies have identified alterations in metabolic pathways linked to thyroid cancer, offering promising avenues for potential therapeutic targets. Conclusions: Precision medicine in thyroid cancer involves the integration of omics sciences with clinical data to develop personalized treatment plans for patients. Employing targeted therapies guided by molecular markers has exhibited promising outcomes in enhancing the prognosis of thyroid cancer patients. Notably, those with advanced hyroid cancer carrying BRAF mutations have displayed substantial responses to specific targeted therapies, such as vemurafenib and dabrafenib.


Subject(s)
Precision Medicine , Thyroid Neoplasms , Humans , Proto-Oncogene Proteins B-raf , Genomics/methods , Proteomics/methods , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/genetics , Thyroid Neoplasms/therapy , Biomarkers
2.
Clin Ter ; 174(Suppl 2(6)): 21-28, 2023.
Article in English | MEDLINE | ID: mdl-37994745

ABSTRACT

Background: Cancer, a potentially fatal condition, is one of the leading causes of death worldwide. Among males aged 20 to 35, the most common cancer in healthy individuals is testicular cancer, accounting for 1% to 2% of all cancers in men. Methods: Throughout this review, we have employed a targeted research approach, carefully handpicking the most representative and relevant articles on the subject. Our methodology involved a systematic review of the scientific literature to ensure a comprehensive and accurate overview of the available sources. Results: The onset and spread of testicular cancer are significantly influenced by genetic changes, including mutations in oncogenes, tu-mor suppressor genes, and DNA repair genes. As a result of identifying these specific genetic mutations in cancers, targeted medications have been developed to disrupt the signaling pathways affected by these genetic changes. To improve the diagnosis and treatment of this disease, it is crucial to understand its natural and clinical histories. Conclusions: In order to comprehend cancer better and to discover new biomarkers and therapeutic targets, oncologists are increasingly employing omics methods, such as genomics, transcriptomics, proteomics, and metabolomics. Targeted medications that focus on specific genetic pathways and mutations hold promise for advancing the diagnosis and management of this disease.


Subject(s)
Testicular Neoplasms , Humans , Male , Testicular Neoplasms/genetics , Testicular Neoplasms/therapy , Precision Medicine , Genomics/methods , Proteomics/methods
3.
Clin Ter ; 174(Suppl 2(6)): 1-10, 2023.
Article in English | MEDLINE | ID: mdl-37994743

ABSTRACT

Abstract: This comprehensive review explores the potential of omics sciences - such as genomics, transcriptomics, proteomics, and metabolomics - in advancing the diagnosis and therapy of urothelial carcinoma (UC), a prevalent and heterogeneous cancer affecting the urinary tract. The article emphasizes the significant advancements in understanding the molecular mechanisms underlying UC development and progression, obtained through the application of omics approa-ches. Genomic studies have identified recurrent genetic alterations in UC, while transcriptomic analyses have revealed distinct gene expression profiles associated with different UC subtypes. Proteomic investigations have recognized protein biomarkers with diagnostic and prognostic potential, and metabolomic profiling has found metabolic alterations that are specific to UC. The integration of multi-omics data holds promises in refining UC subtyping, identifying therapeutic targets, and predicting treatment response. However, challenges like the standardization of omics technologies, validation of biomarkers, and ethical considerations need to be addressed to successfully translate these findings into clinical practice. Omics sciences offer tremendous potential in revolutionizing the diagnosis and therapy of UC, enabling more precise diagnostic methods, prognostic evaluations, and personalized treatment selection for UC patients. Future research efforts should focus on overcoming these challenges and translating omics discoveries into meaningful clinical applications to improve outcomes for UC patients.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Proteomics/methods , Precision Medicine , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy , Biomarkers
4.
Clin Ter ; 174(Suppl 2(6)): 29-36, 2023.
Article in English | MEDLINE | ID: mdl-37994746

ABSTRACT

Background: This article provides an overview of the application of omics sciences in melanoma research. The name omics sciences refers to the large-scale analysis of biological molecules like DNA, RNA, proteins, and metabolites. Methods: In the course of this review, we have adopted a focu-sed research strategy, meticulously selecting the most pertinent and emblematic articles related to the topic. Our methodology included a systematic examination of the scientific literature to guarantee a thorough and precise synthesis of the existing sources. Results: With the advent of high-throughput technologies, omics have become an essential tool for understanding the complexity of melanoma. In this article, we discuss the different omics approaches used in melanoma research, including genomics, transcriptomics, proteomics, and metabolomics. We also highlight the major findings and insights gained from these studies, including the identification of new therapeutic targets and the development of biomarkers for diagnosis and prognosis. Finally, we discuss the challenges and future directions in omics-based melanoma research, including the integration of multiple omics data and the development of personalized medicine approaches. Conclusions: Overall, this article emphasizes the importance of omics science in advancing our understanding of melanoma and its potential for improving patient outcomes.


Subject(s)
Melanoma , Precision Medicine , Humans , Genomics/methods , Proteomics/methods , Biomarkers , Melanoma/genetics , Melanoma/therapy
5.
Clin Ter ; 174(Suppl 2(6)): 46-54, 2023.
Article in English | MEDLINE | ID: mdl-37994748

ABSTRACT

Abstract: In the last decade, renal carcinoma has become more prevalent in European and North American regions. Kidney tumors are usually categorized based on histological features, with renal cell carcinoma being the most common subtype in adults. Despite conventional diagnostic and therapeutic strategies, a rise in cancer incidence and recurrence necessitates a fresh approach to diagnosing and treating kidney cancer. This review focuses on novel multi-omics approaches, such as genomics, transcriptomics, proteomics, metabolomics, and microbiomics, to better understand the molecular and clinical features of renal cell carcinoma. Studies integrating omics sciences have shown early promise in enhancing prognostic and therapeutic outcomes for various kidney cancer subtypes and providing insight into fundamental pathophysiological mechanisms occurring at different molecular levels. This review highlights the importance of utilizing omics sciences as a revolutionary concept in diagnostics and therapeutics and the clinical implications of renal cell carcinoma. Finally, the review presents the most recent findings from large-scale multi-omics studies on renal cell carcinoma and its associations with patient subtyping and drug development.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/therapy , Precision Medicine , Genomics , Proteomics , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy
6.
Clin Ter ; 174(Suppl 2(6)): 85-94, 2023.
Article in English | MEDLINE | ID: mdl-37994752

ABSTRACT

Abstract: Pancreatic cancer is a leading cause of death worldwide, associated with poor prognosis outcomes and late treatment interventions. The pathological nature and extreme tissue heterogeneity of this disease has hampered all efforts to correctly diagnose and treat it. Omics sciences and precision medicine have revolutionized our understanding of pan-creatic cancer, providing a new hope for patients suffering from this devastating disease. By analyzing large-scale biological data sets and developing personalized treatment strategies, researchers and clinicians are working together to improve patient outcomes and ultimately find a cure for pancreatic cancer.


Subject(s)
Genomics , Pancreatic Neoplasms , Humans , Precision Medicine , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms
7.
Clin Ter ; 174(Suppl 2(6)): 149-153, 2023.
Article in English | MEDLINE | ID: mdl-37994758

ABSTRACT

Abstract: The recent COVID-19 pandemic caused by SARS-CoV-2 affected hundreds of millions of people and caused millions of deaths. There are few effective medications against SARS-CoV-2, and several studies attempted to make drugs based on natural components, such as olive leaves. Olive leaves are rich in polyphenolic compounds, which were proposed as a viable co-therapy supplement to treat and improve clinical symptoms in COVID-19 patients. Polyphenols have renown anti-inflammatory and multitarget antiviral effects on several virus families, which could be among the reasons of the beneficial effects of the Mediterranean diet against COVID-19. This scoping review is focused on the effect of olive tree polyphenols as a natural remedy to inhibit SARS-CoV-2, mainly discussing their influence on the process of viral entry into host cells by endocytosis.


Subject(s)
COVID-19 , Olea , Humans , COVID-19/prevention & control , SARS-CoV-2 , Antiviral Agents/therapeutic use , Polyphenols/pharmacology , Polyphenols/therapeutic use , Pandemics/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...