Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Med ; 21(4): 1008-1014, 2019 04.
Article in English | MEDLINE | ID: mdl-30166628

ABSTRACT

PURPOSE: Developmental and epileptic encephalopathies (DEEs) are severe clinical conditions characterized by stagnation or decline of cognitive and behavioral abilities preceded, accompanied or followed by seizures. Because DEEs are clinically and genetically heterogeneous, next-generation sequencing, especially exome sequencing (ES), is becoming a first-tier strategy to identify the molecular etiologies of these disorders. METHODS: We combined ES analysis and international data sharing. RESULTS: We identified 11 unrelated individuals with DEE and de novo heterozygous truncating variants in the interferon regulatory factor 2-binding protein-like gene (IRF2BPL). The 11 individuals allowed for delineation of a consistent neurodevelopmental disorder characterized by mostly normal initial psychomotor development followed by severe global neurological regression and epilepsy with nonspecific electroencephalogram (EEG) abnormalities and variable central nervous system (CNS) anomalies. IRF2BPL, also known as enhanced at puberty protein 1 (EAP1), encodes a transcriptional regulator containing a C-terminal RING-finger domain common to E3 ubiquitin ligases. This domain is required for its repressive and transactivating transcriptional properties. The variants identified are expected to encode a protein lacking the C-terminal RING-finger domain. CONCLUSIONS: These data support the causative role of truncating IRF2BPL variants in pediatric neurodegeneration and expand the spectrum of transcriptional regulators identified as molecular factors implicated in genetic developmental and epileptic encephalopathies.


Subject(s)
Carrier Proteins/genetics , Epilepsy/genetics , Neurodevelopmental Disorders/genetics , Nuclear Proteins/genetics , Seizures/genetics , Adolescent , Adult , Central Nervous System/diagnostic imaging , Central Nervous System/pathology , Child , Electroencephalography , Epilepsy/diagnostic imaging , Epilepsy/physiopathology , Female , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mutation , Neurodevelopmental Disorders/diagnostic imaging , Neurodevelopmental Disorders/physiopathology , Phenotype , Seizures/diagnostic imaging , Seizures/physiopathology , Exome Sequencing , Young Adult
2.
Neurogenetics ; 19(2): 93-103, 2018 05.
Article in English | MEDLINE | ID: mdl-29511999

ABSTRACT

Molecular anomalies in MED13L, leading to haploinsufficiency, have been reported in patients with moderate to severe intellectual disability (ID) and distinct facial features, with or without congenital heart defects. Phenotype of the patients was referred to "MED13L haploinsufficiency syndrome." Missense variants in MED13L were already previously described to cause the MED13L-related syndrome, but only in a limited number of patients. Here we report 36 patients with MED13L molecular anomaly, recruited through an international collaboration between centers of expertise for developmental anomalies. All patients presented with intellectual disability and severe language impairment. Hypotonia, ataxia, and recognizable facial gestalt were frequent findings, but not congenital heart defects. We identified seven de novo missense variations, in addition to protein-truncating variants and intragenic deletions. Missense variants clustered in two mutation hot-spots, i.e., exons 15-17 and 25-31. We found that patients carrying missense mutations had more frequently epilepsy and showed a more severe phenotype. This study ascertains missense variations in MED13L as a cause for MED13L-related intellectual disability and improves the clinical delineation of the condition.


Subject(s)
Intellectual Disability/genetics , Mediator Complex/genetics , Child , Child, Preschool , Female , Humans , Intellectual Disability/diagnosis , Male , Mutation, Missense , Phenotype
3.
Clin Genet ; 93(3): 703-706, 2018 03.
Article in English | MEDLINE | ID: mdl-29095483

ABSTRACT

We report on a girl, born to first cousin Lebanese parents, with intellectual disability, seizures, repeated gingivorrhagia, enlarged lower and upper jaws, overgrowth of the gums, high arched and narrow palate, crowded teeth, hirsutism of the back, large abdomen and a small umbilical hernia. Cysts of the mandible, fibrous dysplasia of bones, and enlarged adenoids causing around 60% narrowing of the nasopharyngeal airways were noted at radiographic examination. Her brother presented with the same features in addition to a short stature, an ostium secundum, and more pronounced intellectual disability. He died at the age of 8 years from a severe pulmonary infection and repeated bleeding episodes. A clinical diagnosis of Ramon syndrome was made. Whole exome sequencing studies performed on the family revealed the presence of a novel homozygous missense mutation in ELMO2 gene, p.I606S in the affected individuals. Loss of function mutations in ELMO2 have been recently described in another clinically distinct condition: primary intraosseous vascular malformation or intraosseous hemangioma, called VMOS. Review of the literature and differential diagnoses are discussed.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cherubism/diagnosis , Cherubism/genetics , Cytoskeletal Proteins/genetics , Epilepsy/diagnosis , Epilepsy/genetics , Fibromatosis, Gingival/diagnosis , Fibromatosis, Gingival/genetics , Growth Disorders/diagnosis , Growth Disorders/genetics , Homozygote , Hypertrichosis/diagnosis , Hypertrichosis/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Mutation , Child, Preschool , Consanguinity , Echocardiography , Female , Genetic Association Studies , Genetic Testing , Genomics/methods , Humans , Phenotype , Radiography
4.
Clin Genet ; 93(3): 567-576, 2018 03.
Article in English | MEDLINE | ID: mdl-28708303

ABSTRACT

Although whole-exome sequencing (WES) is the gold standard for the diagnosis of neurodevelopmental disorders (NDDs), it remains expensive for some genetic centers. Commercialized panels comprising all OMIM-referenced genes called "medical exome" (ME) constitute an alternative strategy to WES, but its efficiency is poorly known. In this study, we report the experience of 2 clinical genetic centers using ME for diagnosis of NDDs. We recruited 216 consecutive index patients with NDDs in 2 French genetic centers, corresponded to the daily practice of the units and included non-syndromic intellectual disability (NSID, n = 33), syndromic ID (NSID = 122), pediatric neurodegenerative disorders (n = 7) and autism spectrum disorder (ASD, n = 54). We sequenced samples from probands and their parents (when available) with the Illumina TruSight One sequencing kit. We found pathogenic or likely pathogenic variants in 56 index patients, for a global diagnostic yield of 25.9%. The diagnosis yield was higher in patients with ID as the main diagnosis (32%) than in patients with ASD (3.7%). Our results suggest that the use of ME is a valuable strategy for patients with ID when WES cannot be used as a routine diagnosis tool.


Subject(s)
Exome Sequencing , Genetic Association Studies , Genetic Predisposition to Disease , Neurodevelopmental Disorders/genetics , Adolescent , Adult , Alleles , Child , Child, Preschool , Computational Biology/methods , Female , Genetic Association Studies/methods , Humans , Infant , Inheritance Patterns , Male , Middle Aged , Neurodevelopmental Disorders/diagnosis , Phenotype , Sequence Analysis, DNA/methods , Young Adult
6.
Clin Genet ; 82(2): 187-92, 2012 Aug.
Article in English | MEDLINE | ID: mdl-21554265

ABSTRACT

ICF (immunodeficiency, centromeric region instability, facial anomalies) syndrome is a rare autosomal recessive disorder characterised by severe immunodeficiency, craniofacial anomalies and chromosome instability. Chromosome analyses from blood samples show a high frequency of decondensation of pericentromeric heterochromatin (PH) and rearrangements involving chromosomes 1 and 16. It is the first and, as far as we know, the only disease associated with a mutation in a DNA methyltransferase gene, DNMT3B, with significant hypomethylation of the classical satellite DNA, the major component of the juxtacentromeric heterochromatin. To better understand the complex links between the hypomethylation of the satellite DNA, the cytogenetic anomalies and the clinical features of ICF syndrome, we performed three-dimensional (3D) FISH on preserved cells from a patient with a suspected ICF phenotype. Analysis of DNMT3B did not reveal any mutation in our patient, making this case an ICF type 2. The results of 3D-FISH showed a statistically significant change in the intranuclear position of PH of chromosome 1 in cells of the patient as compared to normal cells. It is difficult to understand how a defect in the methylation pathway can be responsible for the various symptoms of this condition. From our observations we suggest a mechanistic link between the reorganisation of the nuclear architecture and the altered gene expression.


Subject(s)
Cell Nucleus/genetics , Centromere , Heterochromatin/chemistry , Immunologic Deficiency Syndromes/diagnosis , Immunologic Deficiency Syndromes/genetics , Adolescent , Chromosome Aberrations , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 9 , DNA Methylation , DNA, Satellite , Face/abnormalities , Female , Humans , In Situ Hybridization, Fluorescence , Primary Immunodeficiency Diseases
SELECTION OF CITATIONS
SEARCH DETAIL
...