Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Nucleic Acids Res ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804271

ABSTRACT

Hypervirulent Klebsiella pneumoniae (hvKp) can infect healthy individuals, in contrast to classical strains that commonly cause nosocomial infections. The recent convergence of hypervirulence with carbapenem-resistance in K. pneumoniae can potentially create 'superbugs' that are challenging to treat. Understanding virulence regulation of hvKp is thus critical. Accumulating evidence suggest that posttranscriptional regulation by small RNAs (sRNAs) plays a role in bacterial virulence, but it has hardly been studied in K. pneumoniae. We applied RIL-seq to a prototypical clinical isolate of hvKp to unravel the Hfq-dependent RNA-RNA interaction (RRI) network. The RRI network is dominated by sRNAs, including predicted novel sRNAs, three of which we validated experimentally. We constructed a stringent subnetwork composed of RRIs that involve at least one hvKp virulence-associated gene and identified the capsule gene loci as a hub target where multiple sRNAs interact. We found that the sRNA OmrB suppressed both capsule production and hypermucoviscosity when overexpressed. Furthermore, OmrB base-pairs within kvrA coding region and partially suppresses translation of the capsule regulator KvrA. This agrees with current understanding of capsule as a major virulence and fitness factor. It emphasizes the intricate regulatory control of bacterial phenotypes by sRNAs, particularly of genes critical to bacterial physiology and virulence.

2.
Front Med (Lausanne) ; 10: 1292665, 2023.
Article in English | MEDLINE | ID: mdl-38020140

ABSTRACT

Coinfection of HIV and multidrug-resistant tuberculosis (MDR-TB) presents significant challenges in terms of the treatment and prognosis of tuberculosis, leading to complexities in managing the disease and impacting the overall outcome for TB patients. This study presents a remarkable case of a patient with MDR-TB and HIV coinfection who survived for over 8 years, despite poor treatment adherence and comorbidities. Whole genome sequencing (WGS) of the infecting Mycobacterium tuberculosis (Mtb) strain revealed a unique genomic deletion, spanning 18 genes, including key genes involved in hypoxia response, intracellular survival, immunodominant antigens, and dormancy. This deletion, that we have called "Del-X," potentially exerts a profound influence on the bacterial physiology and its virulence. Only few similar deletions were detected in other non-related Mtb genomes worldwide. In vivo evolution analysis identified drug resistance and metabolic adaptation mutations and their temporal dynamics during the patient's treatment course.

3.
Nat Commun ; 14(1): 7843, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030608

ABSTRACT

In bacteria, determination of the 3' termini of transcripts plays an essential role in regulation of gene expression, affecting the functionality and stability of the transcript. Several experimental approaches were developed to identify the 3' termini of transcripts, however, these were applied only to a limited number of bacteria and growth conditions. Here we present a straightforward approach to identify 3' termini from widely available RNA-seq data without the need for additional experiments. Our approach relies on the observation that the RNAtag-seq sequencing protocol results in overabundance of reads mapped to transcript 3' termini. We present TRS (Termini by Read Starts), a computational pipeline exploiting this property to identify 3' termini in RNAtag-seq data, and show that the identified 3' termini are highly reliable. Since RNAtag-seq data are widely available for many bacteria and growth conditions, our approach paves the way for studying bacterial transcription termination in an unprecedented scope.


Subject(s)
Bacteria , Transcription, Genetic , Bacteria/genetics , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods , Transcriptome , High-Throughput Nucleotide Sequencing
4.
mSystems ; 8(2): e0002423, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36975785

ABSTRACT

Bacteria adapt to their host by mutating specific genes and by reprogramming their gene expression. Different strains of a bacterial species often mutate the same genes during infection, demonstrating convergent genetic adaptation. However, there is limited evidence for convergent adaptation at the transcriptional level. To this end, we utilize genomic data of 114 Pseudomonas aeruginosa strains, derived from patients with chronic pulmonary infection, and the P. aeruginosa transcriptional regulatory network. Relying on loss-of-function mutations in genes encoding transcriptional regulators and predicting their effects through the network, we demonstrate predicted expression changes of the same genes in different strains through different paths in the network, implying convergent transcriptional adaptation. Furthermore, through the transcription lens we associate yet-unknown processes, such as ethanol oxidation and glycine betaine catabolism, with P. aeruginosa host adaptation. We also find that known adaptive phenotypes, including antibiotic resistance, which were identified before as achieved by specific mutations, are achieved also through transcriptional changes. Our study has revealed novel interplay between the genetic and transcriptional levels in host adaptation, demonstrating the versatility of the adaptive arsenal of bacterial pathogens and their ability to adapt to the host conditions in a myriad of ways. IMPORTANCE Pseudomonas aeruginosa causes significant morbidity and mortality. The pathogen's remarkable ability to establish chronic infections greatly depends on its adaptation to the host environment. Here, we use the transcriptional regulatory network to predict expression changes during adaptation. We expand the processes and functions known to be involved in host adaptation. We show that the pathogen modulates the activity of genes during adaptation, including genes implicated in antibiotic resistance, both directly via genomic mutations and indirectly via mutations in transcriptional regulators. Furthermore, we detect a subgroup of genes whose predicted changes in expression are associated with mucoid strains, a major adaptive phenotype in chronic infections. We propose that these genes constitute the transcriptional arm of the mucoid adaptive strategy. Identification of different adaptive strategies utilized by pathogens during chronic infection has major promise in the treatment of persistent infections and opens the door to personalized tailored antibiotic treatment in the future.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/genetics , Host Adaptation , Persistent Infection , Pseudomonas Infections/genetics , Adaptation, Physiological/genetics
5.
NAR Genom Bioinform ; 4(1): lqac015, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35261974

ABSTRACT

A main strategy of bacteria adapting to environmental changes is the remodeling of their transcriptome. Changes in the transcript levels of specific genes are due to combined effects of various regulators, including small RNAs (sRNAs). sRNAs are post-transcriptional regulators of gene expression that mainly control translation, but also directly and indirectly affect the levels of their target transcripts. Yet, the relative contribution of an sRNA to the total change in the transcript level of a gene upon an environmental change has not been assessed. We present a design of differential gene expression analysis by RNA-seq that allows extracting the contribution of an sRNA to the total change in the transcript level of each gene in response to an environmental change by fitting a linear model to the data. We exemplify this for the sRNA RyhB in cells growing under iron limitation and show a variation among genes in the relative contribution of RyhB to the change in their transcript level upon iron limitation, from subtle to very substantial. Extracting the relative contribution of an sRNA to the total change in expression of genes is important for understanding the integration of regulation by sRNAs with other regulatory mechanisms in the cell.

6.
Mol Cell ; 82(3): 629-644.e4, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35063132

ABSTRACT

The envelope of Gram-negative bacteria is a vital barrier that must balance protection and nutrient uptake. Small RNAs are crucial regulators of the envelope composition and function. Here, using RIL-seq to capture the Hfq-mediated RNA-RNA interactome in Salmonella enterica, we discover envelope-related riboregulators, including OppX. We show that OppX acts as an RNA sponge of MicF sRNA, a prototypical porin repressor. OppX originates from the 5' UTR of oppABCDF, encoding the major inner-membrane oligopeptide transporter, and sequesters MicF's seed region to derepress the synthesis of the porin OmpF. Intriguingly, OppX operates as a true sponge, storing MicF in an inactive complex without affecting its levels or stability. Conservation of the opp-OppX-MicF-ompF axis in related bacteria suggests that it serves an important mechanism, adjusting envelope porosity to specific transport capacity. These data also highlight the resource value of this Salmonella RNA interactome, which will aid in unraveling RNA-centric regulation in enteric pathogens.


Subject(s)
5' Untranslated Regions , Cell Membrane/genetics , Escherichia coli Proteins/genetics , Host Factor 1 Protein/genetics , RNA, Bacterial/genetics , Salmonella enterica/genetics , Biological Transport , Cell Membrane/metabolism , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Host Factor 1 Protein/metabolism , Host-Pathogen Interactions , Permeability , Porins/genetics , Porins/metabolism , RNA, Bacterial/metabolism , RNA-Seq , Salmonella enterica/metabolism , Salmonella enterica/pathogenicity
7.
Sci Adv ; 7(44): eabi8228, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34705501

ABSTRACT

Small RNAs (sRNAs) exert their regulation posttranscriptionally by base pairing with their target mRNAs, often in association with the RNA chaperone protein Hfq. Here, integrating RNA-seq­based technologies and bioinformatics, we deciphered the Hfq-mediated sRNA-target interactome of enteropathogenic Escherichia coli (EPEC). The emerging network comprises hundreds of sRNA-mRNA pairs, including mRNAs of virulence-associated genes interacting with known sRNAs encoded within the core genome, as well as with newly found sRNAs encoded within pathogenicity islands. Some of the sRNAs affect multiple virulence genes, suggesting they function as hubs of virulence control. We further analyzed one such sRNA hub, MgrR, and one of its targets identified here, the major virulence-associated chaperon, cesT. We show that MgrR adjusts the level of EPEC cytotoxicity via regulation of CesT expression. Our results reveal an elaborate sRNA-mRNA interactome controlling the pathogenicity of EPEC and reinforce a role for sRNAs in the control of pathogen-host interaction.

8.
Front Microbiol ; 12: 635070, 2021.
Article in English | MEDLINE | ID: mdl-34093460

ABSTRACT

The genomic revolution and subsequent advances in large-scale genomic and transcriptomic technologies highlighted hidden genomic treasures. Among them stand out non-coding small RNAs (sRNAs), shown to play important roles in post-transcriptional regulation of gene expression in both pro- and eukaryotes. Bacterial sRNA-encoding genes were initially identified in intergenic regions, but recent evidence suggest that they can be encoded within other, well-defined, genomic elements. This notion was strongly supported by data generated by RIL-seq, a RNA-seq-based methodology we recently developed for deciphering chaperon-dependent sRNA-target networks in bacteria. Applying RIL-seq to Hfq-bound RNAs in Escherichia coli, we found that ∼64% of the detected RNA pairs involved known sRNAs, suggesting that yet unknown sRNAs may be included in the ∼36% remaining pairs. To determine the latter, we first tested and refined a set of quantitative features derived from RIL-seq data, which distinguish between Hfq-dependent sRNAs and "other RNAs". We then incorporated these features in a machine learning-based algorithm that predicts novel sRNAs from RIL-seq data, and identified high-scoring candidates encoded in various genomic regions, mostly intergenic regions and 3' untranslated regions, but also 5' untranslated regions and coding sequences. Several candidates were further tested and verified by northern blot analysis as Hfq-dependent sRNAs. Our study reinforces the emerging concept that sRNAs are encoded within various genomic elements, and provides a computational framework for the detection of additional sRNAs in Hfq RIL-seq data of E. coli grown under different conditions and of other bacteria manifesting Hfq-mediated sRNA-target interactions.

9.
Mol Biol Evol ; 38(3): 1101-1121, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33118035

ABSTRACT

Within-host adaptation is a hallmark of chronic bacterial infections, involving substantial genomic changes. Recent large-scale genomic data from prolonged infections allow the examination of adaptive strategies employed by different pathogens and open the door to investigate whether they converge toward similar strategies. Here, we compiled extensive data of whole-genome sequences of bacterial isolates belonging to miscellaneous species sampled at sequential time points during clinical infections. Analysis of these data revealed that different species share some common adaptive strategies, achieved by mutating various genes. Although the same genes were often mutated in several strains within a species, different genes related to the same pathway, structure, or function were changed in other species utilizing the same adaptive strategy (e.g., mutating flagellar genes). Strategies exploited by various bacterial species were often predicted to be driven by the host immune system, a powerful selective pressure that is not species specific. Remarkably, we find adaptive strategies identified previously within single species to be ubiquitous. Two striking examples are shifts from siderophore-based to heme-based iron scavenging (previously shown for Pseudomonas aeruginosa) and changes in glycerol-phosphate metabolism (previously shown to decrease sensitivity to antibiotics in Mycobacterium tuberculosis). Virulence factors were often adaptively affected in different species, indicating shifts from acute to chronic virulence and virulence attenuation during infection. Our study presents a global view on common within-host adaptive strategies employed by different bacterial species and provides a rich resource for further studying these processes.


Subject(s)
Adaptation, Biological/genetics , Bacteria/genetics , Biological Evolution , Host-Pathogen Interactions/genetics , Selection, Genetic , Bacteria/metabolism , Iron/metabolism , Loss of Function Mutation , Mutation Rate
10.
Cell Rep ; 30(9): 3127-3138.e6, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32130912

ABSTRACT

Bacterial small RNAs (sRNAs) are posttranscriptional regulators of gene expression that base pair with complementary sequences on target mRNAs, often in association with the chaperone Hfq. Here, using experimentally identified sRNA-target pairs, along with gene expression measurements, we assess basic principles of regulation by sRNAs. We show that the sRNA sequence dictates the target repertoire, as point mutations in the sRNA shift the target set correspondingly. We distinguish two subsets of targets: targets showing changes in expression levels under overexpression of their sRNA regulator and unaffected targets that interact more sporadically with the sRNA. These differences among targets are associated with their Hfq occupancy, rather than with the sRNA-target base-pairing potential. Our results suggest that competition among targets over Hfq binding plays a major role in the regulatory outcome, possibly awarding targets with higher Hfq binding efficiency an advantage in the competition over binding to the sRNA.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Host Factor 1 Protein/metabolism , Molecular Chaperones/metabolism , RNA, Bacterial/metabolism , Base Sequence , Binding Sites , Models, Biological , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
Cell Rep ; 27(2): 334-342.e10, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30929979

ABSTRACT

We have previously described the existence of membranous nanotubes, bridging adjacent bacteria, facilitating intercellular trafficking of nutrients, cytoplasmic proteins, and even plasmids, yet components enabling their biogenesis remain elusive. Here we reveal the identity of a molecular apparatus providing a platform for nanotube biogenesis. Using Bacillus subtilis (Bs), we demonstrate that conserved components of the flagellar export apparatus (FliO, FliP, FliQ, FliR, FlhB, and FlhA), designated CORE, dually serve for flagellum and nanotube assembly. Mutants lacking CORE genes, but not other flagellar components, are deficient in both nanotube production and the associated intercellular molecular trafficking. In accord, CORE components are located at sites of nanotube emergence. Deleting COREs of distinct species established that CORE-mediated nanotube formation is widespread. Furthermore, exogenous COREs from diverse species could restore nanotube generation and functionality in Bs lacking endogenous CORE. Our results demonstrate that the CORE-derived nanotube is a ubiquitous organelle that facilitates intercellular molecular trade across the bacterial kingdom.


Subject(s)
Bacterial Proteins/metabolism , Nanotubes/chemistry
13.
Nucleic Acids Res ; 46(19): 10380-10394, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30113670

ABSTRACT

Bacterial RNase III plays important roles in the processing and degradation of RNA transcripts. A major goal is to identify the cleavage targets of this endoribonuclease at a transcriptome-wide scale and delineate its in vivo cleavage rules. Here we applied to Escherichia coli grown to either exponential or stationary phase a tailored RNA-seq-based technology, which allows transcriptome-wide mapping of RNase III cleavage sites at a nucleotide resolution. Our analysis of the large-scale in vivo cleavage data substantiated the established cleavage pattern of a double cleavage in an intra-molecular stem structure, leaving 2-nt-long 3' overhangs, and refined the base-pairing preferences in the cleavage site vicinity. Intriguingly, we observed that the two stem positions between the cleavage sites are highly base-paired, usually involving at least one G-C or C-G base pair. We present a clear distinction between intra-molecular stem structures that are RNase III substrates and intra-molecular stem structures randomly selected across the transcriptome, emphasizing the in vivo specificity of RNase III. Our study provides a comprehensive map of the cleavage sites in both intra-molecular and inter-molecular duplex substrates, providing novel insights into the involvement of RNase III in post-transcriptional regulation in the bacterial cell.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , RNA, Bacterial/genetics , RNA, Messenger/genetics , Ribonuclease III/genetics , Base Pairing , Base Sequence , Binding Sites , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Nucleic Acid Conformation , Protein Binding , RNA Cleavage , RNA Processing, Post-Transcriptional , RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Ribonuclease III/chemistry , Ribonuclease III/metabolism , Sequence Analysis, RNA , Substrate Specificity , Transcriptome
14.
RNA ; 24(8): 991-1004, 2018 08.
Article in English | MEDLINE | ID: mdl-29752351

ABSTRACT

In human, nearly half of the known microRNAs (miRNAs) are encoded within the introns of protein-coding genes. The embedment of these miRNA genes within the sequences of protein-coding genes alludes to a possible functional relationship between intronic miRNAs and their hosting genes. Several studies, using predicted targets, suggested that intronic miRNAs influence their hosts' function either antagonistically or synergistically. New experimental data of miRNA expression patterns and targets enable exploring this putative association by relying on actual data rather than on predictions. Here, our analysis based on currently available experimental data implies that the potential functional association between intronic miRNAs and their hosting genes is limited. For host-miRNA examples where functional associations were detected, it was manifested by either autoregulation, common targets of the miRNA and hosting gene, or through the targeting of transcripts participating in pathways in which the host gene is involved. This low prevalence of functional association is consistent with our observation that many intronic miRNAs have independent transcription start sites and are not coexpressed with the hosting gene. Yet, the intronic miRNAs that do show functional association with their hosts were found to be more evolutionarily conserved compared to other intronic miRNAs. This might suggest a selective pressure to maintain this architecture when it has a functional consequence.


Subject(s)
Introns/genetics , MicroRNAs/genetics , Proteins/genetics , Cell Line, Tumor , HEK293 Cells , Humans , RNA Processing, Post-Transcriptional/genetics
15.
Nat Protoc ; 13(1): 1-33, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29215635

ABSTRACT

Small RNAs (sRNAs) are major post-transcriptional regulators of gene expression in bacteria. To enable transcriptome-wide mapping of bacterial sRNA-target pairs, we developed RIL-seq (RNA interaction by ligation and sequencing). RIL-seq is an experimental-computational methodology for capturing sRNA-target interactions in vivo that takes advantage of the mutual binding of the sRNA and target RNA molecules to the RNA chaperone protein Hfq. The experimental part of the protocol involves co-immunoprecipitation of Hfq and bound RNAs, ligation of RNAs, library preparation and sequencing. The computational pipeline maps the sequenced fragments to the genome, reveals chimeric fragments (fragments comprising two ligated independent fragments) and determines statistically significant overrepresented chimeric fragments as interacting RNAs. The statistical filter is aimed at reducing the number of spurious interactions resulting from ligation of random neighboring RNA fragments, thus increasing the reliability of the determined sRNA-target pairs. A major advantage of RIL-seq is that it does not require overexpression of sRNAs; instead, it simultaneously captures the in vivo targets of all sRNAs in the native state of the cell. Application of RIL-seq to bacteria grown under different conditions provides distinctive snapshots of the sRNA interactome and sheds light on the dynamics and rewiring of the post-transcriptional regulatory network. As RIL-seq needs no prior information about the sRNA and target sequences, it can identify novel sRNAs, along with their targets. It can be adapted to detect protein-mediated RNA-RNA interactions in any bacterium with a sequenced genome. The experimental part of the RIL-seq protocol takes 7-9 d and the computational analysis takes ∼2 d.


Subject(s)
Chromosome Mapping/methods , High-Throughput Nucleotide Sequencing/methods , RNA, Bacterial/genetics , RNA, Small Untranslated/genetics , Sequence Analysis, RNA/methods , Transcriptome/genetics , Genome, Bacterial , Genomics
16.
Nat Commun ; 8(1): 2029, 2017 12 11.
Article in English | MEDLINE | ID: mdl-29229900

ABSTRACT

The majority of mammalian genes contain one or more alternative polyadenylation sites. Choice of polyadenylation sites was suggested as one of the underlying mechanisms for generating longer/shorter transcript isoforms. Here, we demonstrate that mature mRNA transcripts can undergo additional cleavage and polyadenylation at a proximal internal site in the 3'-UTR, resulting in two stable, autonomous, RNA fragments: a coding sequence with a shorter 3'-UTR (body) and an uncapped 3'-UTR sequence downstream of the cleavage point (tail). Analyses of the human transcriptome has revealed thousands of such cleavage positions, suggesting a widespread post-transcriptional phenomenon producing thousands of stable 3'-UTR RNA tails that exist alongside their transcripts of origin. By analyzing the impact of microRNAs, we observed a significantly stronger effect for microRNA regulation at the body compared to the tail fragments. Our findings open a variety of future research prospects and call for a new perspective on 3'-UTR-dependent gene regulation.


Subject(s)
3' Untranslated Regions/genetics , RNA Isoforms/genetics , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , Animals , Cell Line, Tumor , Gene Expression Profiling , Gene Expression Regulation , HEK293 Cells , Humans , Mice, Inbred C57BL , MicroRNAs/genetics , Open Reading Frames/genetics , Polyadenylation , RNA Caps
17.
Annu Rev Biophys ; 46: 131-148, 2017 05 22.
Article in English | MEDLINE | ID: mdl-28532217

ABSTRACT

Small RNAs (sRNAs) are central regulators of gene expression in bacteria, controlling target genes posttranscriptionally by base pairing with their mRNAs. sRNAs are involved in many cellular processes and have unique regulatory characteristics. In this review, we discuss the properties of regulation by sRNAs and how it differs from and combines with transcriptional regulation. We describe the global characteristics of the sRNA-target networks in bacteria using graph-theoretic approaches and review the local integration of sRNAs in mixed regulatory circuits, including feed-forward loops and their combinations, feedback loops, and circuits made of an sRNA and another regulator, both derived from the same transcript. Finally, we discuss the competition effects in posttranscriptional regulatory networks that may arise over shared targets, shared regulators, and shared resources and how they may lead to signal propagation across the network.


Subject(s)
Bacteria/metabolism , RNA, Bacterial/metabolism , RNA, Small Untranslated/metabolism , Bacteria/genetics , Base Pairing , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , RNA, Bacterial/genetics , RNA, Small Untranslated/genetics
18.
Mol Cell ; 63(5): 884-97, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27588604

ABSTRACT

Small RNAs (sRNAs) associated with the RNA chaperon protein Hfq are key posttranscriptional regulators of gene expression in bacteria. Deciphering the sRNA-target interactome is an essential step toward understanding the roles of sRNAs in the cellular networks. We developed a broadly applicable methodology termed RIL-seq (RNA interaction by ligation and sequencing), which integrates experimental and computational tools for in vivo transcriptome-wide identification of interactions involving Hfq-associated sRNAs. By applying this methodology to Escherichia coli we discovered an extensive network of interactions involving RNA pairs showing sequence complementarity. We expand the ensemble of targets for known sRNAs, uncover additional Hfq-bound sRNAs encoded in various genomic regions along with their trans encoded targets, and provide insights into binding and possible cycling of RNAs on Hfq. Comparison of the sRNA interactome under various conditions has revealed changes in the sRNA repertoire as well as substantial re-wiring of the network between conditions.


Subject(s)
Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Genome, Bacterial , Host Factor 1 Protein/genetics , RNA, Bacterial/genetics , RNA, Small Untranslated/genetics , Base Pairing , Binding Sites , Chromosome Mapping , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , High-Throughput Nucleotide Sequencing , Host Factor 1 Protein/metabolism , Nucleotide Motifs , Protein Binding , RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , RNA, Small Untranslated/chemistry , RNA, Small Untranslated/metabolism
19.
Article in English | MEDLINE | ID: mdl-26066198

ABSTRACT

Mixed feedback loops combining transcriptional and posttranscriptional regulations are common in cellular regulatory networks. They consist of two genes, encoding a transcription factor and a small noncoding RNA (sRNA), which mutually regulate each other's expression. We present a theoretical and numerical study of coherent mixed feedback loops of this type, in which both regulations are negative. Under suitable conditions, these feedback loops are expected to exhibit bistability, namely, two stable states, one dominated by the transcriptional repressor and the other dominated by the sRNA. We use deterministic methods based on rate equation models, in order to identify the range of parameters in which bistability takes place. However, the deterministic models do not account for the finite lifetimes of the bistable states and the spontaneous, fluctuation-driven transitions between them. Therefore, we use stochastic methods to calculate the average lifetimes of the two states. It is found that these lifetimes strongly depend on rate coefficients such as the transcription rates of the transcriptional repressor and the sRNA. In particular, we show that the fraction of time the system spends in the sRNA-dominated state follows a monotonically decreasing sigmoid function of the transcriptional repressor transcription rate. The biological relevance of these results is discussed in the context of such mixed feedback loops in Escherichia coli. It is shown that the fluctuation-driven transitions and the dependence of some rate coefficients on the biological conditions enable the cells to switch to the state which is better suited for the existing conditions and to remain in that state as long as these conditions persist.


Subject(s)
Feedback, Physiological , Gene Expression Regulation , Models, Genetic , Transcription, Genetic/genetics , Escherichia coli/genetics , Stochastic Processes , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Nat Commun ; 6: 7075, 2015 May 11.
Article in English | MEDLINE | ID: mdl-25959309

ABSTRACT

Ndd1 activates the Mcm1-Fkh2 transcription factor to transcribe mitotic regulators. The anaphase-promoting complex/cyclosome activated by Cdh1 (APC/C(Cdh1)) mediates the degradation of proteins throughout G1. Here we show that the APC/C(Cdh1) ubiquitinates Ndd1 and mediates its degradation, and that APC/C(Cdh1) activity suppresses accumulation of Ndd1 targets. We confirm putative Ndd1 targets and identify novel ones, many of them APC/C(Cdh1) substrates. The APC/C(Cdh1) thus regulates these proteins in a dual manner­both pretranscriptionally and post-translationally, forming a multi-layered feedforward loop (FFL). We predict by mathematical modelling and verify experimentally that this FFL introduces a lag between APC/C(Cdh1) inactivation at the end of G1 and accumulation of genes transcribed by Ndd1 in G2. This regulation generates two classes of APC/C(Cdh1) substrates, early ones that accumulate in S and late ones that accumulate in G2. Our results show how the dual state APC/C(Cdh1) activity is converted into multiple outputs by interactions between its substrates.


Subject(s)
Cdh1 Proteins/metabolism , Cell Cycle Proteins/metabolism , Gene Expression Regulation, Fungal/physiology , Mitosis/physiology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Transcription Factors/metabolism , Cdh1 Proteins/genetics , Cell Cycle Proteins/genetics , Proteolysis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...