Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 51(22): 12124-12139, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37930868

ABSTRACT

Guanine-rich DNA strands can fold into non-canonical four-stranded secondary structures named G-quadruplexes (G4s). G4s folded in proximal promoter regions (PPR) are associated either with positive or negative transcriptional regulation. Given that single nucleotide variants (SNVs) affecting G4 folding (G4-Vars) may alter gene transcription, and that SNVs are associated with the human diseases' onset, we undertook a novel comprehensive study of the G4-Vars genome-wide (G4-variome) to find disease-associated G4-Vars located into PPRs. We developed a bioinformatics strategy to find disease-related SNVs located into PPRs simultaneously overlapping with putative G4-forming sequences (PQSs). We studied five G4-Vars disturbing in vitro the folding and stability of the G4s located into PPRs, which had been formerly associated with sporadic Alzheimer's disease (GRIN2B), a severe familiar coagulopathy (F7), atopic dermatitis (CSF2), myocardial infarction (SIRT1) and deafness (LHFPL5). Results obtained in cultured cells for these five G4-Vars suggest that the changes in the G4s affect the transcription, potentially contributing to the development of the mentioned diseases. Collectively, data reinforce the general idea that G4-Vars may impact on the different susceptibilities to human genetic diseases' onset, and could be novel targets for diagnosis and drug design in precision medicine.


Subject(s)
G-Quadruplexes , Humans , Promoter Regions, Genetic , DNA/chemistry , Gene Expression Regulation , Genetic Variation
2.
Plant Mol Biol ; 113(1-3): 89-103, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37702897

ABSTRACT

Seed storage compound deposition is influenced by both maternal and filial tissues. Within this framework, we analyzed strategies that operate during the development and filling of soybean embryos, using in vitro culture systems combined with metabolomics and proteomics approaches. The carbon:nitrogen ratio (C:N) of the maternal supply and the hormone abscisic acid (ABA) are specific and interacting signals inducing differential metabolic reprogrammings linked to changes in the accumulation of storage macromolecules like proteins or oils. Differences in the abundance of sugars, amino acids, enzymes, transporters, transcription factors, and proteins involved in signaling were detected. Embryos adapted to the nutritional status by enhancing the metabolism of both carbon and nitrogen under lower C:N ratio condition or only carbon under higher C:N ratio condition. ABA turned off multiple pathways especially in high availability of amino acids, prioritizing the storage compounds biosynthesis. Common responses induced by ABA involved increased sucrose uptake (to increase the sink force) and oleosin (oil body structural component) accumulation. In turn, ABA differentially promoted protein degradation under lower nitrogen supply in order to sustain the metabolic demands. Further, the operation of a citrate shuttle was suggested by transcript quantification and enzymatic activity measurements. The results obtained are useful to help define biotechnological tools and technological approaches to improve oil and protein yields, with direct impact on human and animal nutrition as well as in green chemistry.

3.
Plant Physiol Biochem ; 186: 64-75, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35810688

ABSTRACT

Eucalypts are the most planted hardwood trees worldwide because of their very rapid growth, exceptional wood quality and adaptability. However, most commercial species and derived hybrids are sensitive to frost, which remains as the largest obstacle to their introduction in warm/temperate climates. As evergreen species, Eucalypts have developed the ability to tolerate frost events based on physiological and molecular responses triggered by previous exposure to cold temperatures, globally named cold acclimation. To characterize the acclimation process in two species with different tolerance to frost, E. grandis (Eg) and E. benthamii (Eb), seedlings were exposed for different times to low temperatures. Frost tolerance was estimated in leaves by an electrolyte leakage assay, and metabolome and morpho-physiological changes studied and correlated to the observed acclimation responses. Eb showed higher basal frost tolerance and an earlier and stronger acclimation response to cold temperatures than in the frost sensitive Eg. Eb was able to modify several morpho-physiological parameters, with a restriction in plant height, leaf area and leaf fresh weight during acclimation. Metabolome characterization allowed us to differentiate species and strengthen our understanding of their acclimation response dynamics. Interestingly, Eb displayed an early phase of sugar accumulation followed by a rise of different metabolites with possible roles as osmolytes and antioxidants, that correlated to frost tolerance and may explain Eb higher capacity to acclimate. This novel approach has helped us to point to the main metabolic processes underlying the cold tolerance acquisition process in two relevant Eucalyptus species.


Subject(s)
Eucalyptus , Acclimatization , Cold Temperature , Eucalyptus/physiology , Freezing , Plant Leaves/physiology , Trees/physiology
4.
J Exp Bot ; 72(22): 7876-7890, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34402880

ABSTRACT

C4 photosynthesis is typically characterized by the spatial compartmentalization of the photosynthetic reactions into mesophyll (M) and bundle sheath (BS) cells. Initial carbon fixation within M cells gives rise to C4 acids, which are transported to the BS cells. There, C4 acids are decarboxylated so that the resulting CO2 is incorporated into the Calvin cycle. This work is focused on the study of Setaria viridis, a C4 model plant, closely related to several major feed and bioenergy grasses. First, we performed the heterologous expression and biochemical characterization of Setaria isoforms for chloroplastic NADP-malic enzyme (NADP-ME) and mitochondrial NAD-malic enzyme (NAD-ME). The kinetic parameters obtained agree with a major role for NADP-ME in the decarboxylation of the C4 acid malate in the chloroplasts of BS cells. In addition, mitochondria-located NAD-ME showed regulatory properties that could be important in the context of the operation of the C4 carbon shuttle. Secondly, we compared the proteomes of M and BS compartments and found 825 differentially accumulated proteins that could support different metabolic scenarios. Most interestingly, we found evidence of metabolic strategies to insulate the C4 core avoiding the leakage of intermediates by either up-regulation or down-regulation of chloroplastic, mitochondrial, and peroxisomal proteins. Overall, the results presented in this work provide novel data concerning the complexity of C4 metabolism, uncovering future lines of research that will undoubtedly contribute to the expansion of knowledge on this topic.


Subject(s)
Setaria Plant , Chloroplasts/metabolism , Malate Dehydrogenase/metabolism , Photosynthesis , Plant Leaves/metabolism , Plants/metabolism , Setaria Plant/metabolism
5.
Plant Physiol Biochem ; 154: 316-327, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32593088

ABSTRACT

The ability of plants to cope with frost events relies on the physiological and molecular responses triggered by cold temperatures. This process, named acclimation, involves reprogramming gene expression in order to adjust metabolism. Planted Eucalyptus species are highly productive but most of them are frost sensitive. However, acclimation process varies among species and environmental conditions, promoting more or less frost damage in young plantations of frost-prone areas. To identify metabolites and proteins responsible for these differences, two acclimation regimes were imposed to seedling of Eucalyptus grandis Hill ex Maiden (Eg), Eucalyptus dunnii Maiden (Ed) and Eucalyptus benthamii Maiden Cambage (Eb), and leaves submitted to biochemical and molecular analyses. Further, seedlings were used for simulated frosts in order to test the acclimation status effect on frost tolerance. Eb showed higher frost tolerance than Ed and Eg under control and acclimation scenarios, possibly due to its higher accumulation of phenolics, anthocyanins and soluble sugars as well as lower levels of photosynthetic pigments and related proteins. Also, a rise in frost tolerance and in osmoprotectants and antioxidants was observed for all the species due to cold acclimation treatment. Interestingly, metabolic profiles differed among species, suggesting different mechanisms to endure frosts and, probably, different requirements for cold acclimation. Shotgun proteomics reinforced differences and commonalities and supported metabolome observations. An in depth understanding of these responses could help to safeguard planted forests productivity through breeding of tolerant genetic material.


Subject(s)
Acclimatization , Cold Temperature , Eucalyptus/physiology , Freezing , Metabolome , Proteome
6.
Plant Sci ; 280: 348-354, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30824014

ABSTRACT

This work reports the molecular cloning and heterologous expression of the genes coding for α and ß subunits of pyrophosphate-dependent phosphofructokinase (PPi-PFK) from orange. When expressed individually, both recombinant subunits were produced as highly purified monomeric proteins able to phosphorylate fructose-6-phosphate at the expenses of PPi (specific activity of 0.075 and 0.017 units. mg-1 for α and ß subunits, respectively). On the other hand, co-expression rendered a α3ß3 hexamer with specific activity three orders of magnitude higher than the single subunits. All the conformations of the enzyme were characterized with respect to its kinetic properties and sensitivity to the regulator fructose-2,6-bisphosphate. A thorough review of current knowledge on the matter indicates that this is the first report of the recombinant production of active plant PPi-PFK and the characterization of its different conformations. This is a main contribution for future studies focused to better understand the enzyme properties and how it accomplishes its relevant role in plant metabolism.


Subject(s)
Citrus sinensis/enzymology , Phosphofructokinases/metabolism , Phosphotransferases/metabolism , Citrus sinensis/genetics , Cloning, Molecular , Diphosphates/metabolism , Fructosediphosphates/metabolism , Fructosephosphates/metabolism , Gene Expression , Kinetics , Multiprotein Complexes , Phosphofructokinases/genetics , Phosphorylation , Phosphotransferases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Recombinant Proteins
7.
PLoS One ; 12(4): e0175939, 2017.
Article in English | MEDLINE | ID: mdl-28426725

ABSTRACT

The prolyl isomerase Pin1 plays a key role in the modulation of proline-directed phosphorylation signaling by inducing local conformational changes in phosphorylated protein substrates. Extensive studies showed different roles for Pin1 in physiological processes and pathological conditions such as cancer and neurodegenerative diseases. However, there are still several unanswered questions regarding its biological role. Notably, despite evidences from cultured cells showing that Pin1 expression and activity may be regulated by different mechanisms, little is known on their relevance in vivo. Using Danio rerio (zebrafish) as a vertebrate model organism we showed that pin1 expression is regulated during embryogenesis to achieve specific mRNA and protein distribution patterns. Moreover, we found different subcellular distribution in particular stages and cell types and we extended the study of Pin1 expression to the adult zebrafish brain. The analysis of Pin1 overexpression showed alterations on zebrafish development and the presence of p53-dependent apoptosis. Collectively, our results suggest that specific mechanisms are operated in different cell types to regulate Pin1 function.


Subject(s)
Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Zebrafish/embryology , Animals , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Substrate Specificity
8.
Nucleic Acids Res ; 44(9): 4163-73, 2016 05 19.
Article in English | MEDLINE | ID: mdl-26773060

ABSTRACT

G-quadruplexes are dynamic structures folded in G-rich single-stranded DNA regions. These structures have been recognized as a potential nucleic acid based mechanism for regulating multiple cellular processes such as replication, transcription and genomic maintenance. So far, their transcriptional role in vivo during vertebrate embryonic development has not yet been addressed. Here, we performed an in silico search to find conserved putative G-quadruplex sequences (PQSs) within proximal promoter regions of human, mouse and zebrafish developmental genes. Among the PQSs able to fold in vitro as G-quadruplex, those present in nog3, col2a1 and fzd5 promoters were selected for further studies. In cellulo studies revealed that the selected G-quadruplexes affected the transcription of luciferase controlled by the SV40 nonrelated promoter. G-quadruplex disruption in vivo by microinjection in zebrafish embryos of either small ligands or DNA oligonucleotides complementary to the selected PQSs resulted in lower transcription of the targeted genes. Moreover, zebrafish embryos and larvae phenotypes caused by the presence of complementary oligonucleotides fully resembled those ones reported for nog3, col2a1 and fzd5 morphants. To our knowledge, this is the first work revealing in vivo the role of conserved G-quadruplexes in the embryonic development, one of the most regulated processes of the vertebrates biology.


Subject(s)
G-Quadruplexes , Gene Expression Regulation, Developmental , Transcription, Genetic , Animals , Base Sequence , Cell Line, Tumor , Collagen Type II/genetics , Collagen Type II/metabolism , DNA, Single-Stranded , Embryo, Nonmammalian/metabolism , Humans , Mice , Promoter Regions, Genetic , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics
9.
Biochim Biophys Acta ; 1839(11): 1151-60, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25151948

ABSTRACT

BACKGROUND: Cellular nucleic acid binding protein (CNBP) is a small and highly conserved protein with nucleic acid chaperone activity that binds single-stranded nucleic acids. Data collected so far suggests that CNBP is required for proper craniofacial development. Despite the advances achieved in the last decade, the identity of the molecular targets of CNBP responsible for its role in rostral head development remains elusive. METHODS: In this work we used the CNBP single-stranded DNA-consensus binding sequence to find out putative CNBP target genes present in the human, mouse, chicken, Xenopus and zebrafish genomes. RESULTS: Most of the identified genes are associated with embryonic developmental processes, being three of them (cdk14, ptk7 and tcf7l2) members of the Wnt signaling pathway. This finding, along with previous one showing that CNBP down-regulates the transcription of Wnt5, aimed our work to address the role of CNBP on the WNT signaling players and pathway regulation. Experiments carried out in zebrafish developing embryos revealed that craniofacial morphology was more adversely affected as CNBP abundance decreased. Furthermore, we observed that CNBP up-regulated in a dose-dependent fashion the transcription of cdk14, ptk7 and tcf7l2, which in turn was reflected in c-myc, ccnd1 and axin2 expression. CONCLUSIONS: RESULTS reveal a role of CNBP in transcriptional control of components of the Wnt signaling pathway, which might explain its requirement for proper craniofacial development.


Subject(s)
RNA-Binding Proteins/physiology , Wnt Signaling Pathway/genetics , Zebrafish Proteins/physiology , Animals , Bone Development/genetics , Chickens , Embryo, Nonmammalian , Face/embryology , Gene Expression Regulation, Developmental , Humans , Mice , Receptor Protein-Tyrosine Kinases/genetics , Skull/embryology , Transcription Factor 7-Like 2 Protein/genetics , Xenopus , Zebrafish/embryology , Zebrafish Proteins/genetics
10.
Am J Hum Genet ; 94(1): 120-8, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-24360810

ABSTRACT

Richieri-Costa-Pereira syndrome is an autosomal-recessive acrofacial dysostosis characterized by mandibular median cleft associated with other craniofacial anomalies and severe limb defects. Learning and language disabilities are also prevalent. We mapped the mutated gene to a 122 kb region at 17q25.3 through identity-by-descent analysis in 17 genealogies. Sequencing strategies identified an expansion of a region with several repeats of 18- or 20-nucleotide motifs in the 5' untranslated region (5' UTR) of EIF4A3, which contained from 14 to 16 repeats in the affected individuals and from 3 to 12 repeats in 520 healthy individuals. A missense substitution of a highly conserved residue likely to affect the interaction of eIF4AIII with the UPF3B subunit of the exon junction complex in trans with an expanded allele was found in an unrelated individual with an atypical presentation, thus expanding mutational mechanisms and phenotypic diversity of RCPS. EIF4A3 transcript abundance was reduced in both white blood cells and mesenchymal cells of RCPS-affected individuals as compared to controls. Notably, targeting the orthologous eif4a3 in zebrafish led to underdevelopment of several craniofacial cartilage and bone structures, in agreement with the craniofacial alterations seen in RCPS. Our data thus suggest that RCPS is caused by mutations in EIF4A3 and show that EIF4A3, a gene involved in RNA metabolism, plays a role in mandible, laryngeal, and limb morphogenesis.


Subject(s)
Clubfoot/genetics , DEAD-box RNA Helicases/genetics , Eukaryotic Initiation Factor-4A/genetics , Hand Deformities, Congenital/genetics , Pierre Robin Syndrome/genetics , Alleles , Amino Acid Sequence , Animals , Bone and Bones/abnormalities , Child , Child, Preschool , Chromosome Mapping , DEAD-box RNA Helicases/metabolism , Eukaryotic Initiation Factor-4A/metabolism , Female , Humans , Male , Molecular Sequence Data , Mutation, Missense , Protein Conformation , Zebrafish/abnormalities
11.
PLoS One ; 8(5): e63234, 2013.
Article in English | MEDLINE | ID: mdl-23667590

ABSTRACT

CNBP is a nucleic acid chaperone implicated in vertebrate craniofacial development, as well as in myotonic dystrophy type 2 (DM2) and sporadic inclusion body myositis (sIBM) human muscle diseases. CNBP is highly conserved among vertebrates and has been implicated in transcriptional regulation; however, its DNA binding sites and molecular targets remain elusive. The main goal of this work was to identify CNBP DNA binding sites that might reveal target genes involved in vertebrate embryonic development. To accomplish this, we used a recently described yeast one-hybrid assay to identify DNA sequences bound in vivo by CNBP. Bioinformatic analyses revealed that these sequences are G-enriched and show high frequency of putative G-quadruplex DNA secondary structure. Moreover, an in silico approach enabled us to establish the CNBP DNA-binding site and to predict CNBP putative targets based on gene ontology terms and synexpression with CNBP. The direct interaction between CNBP and candidate genes was proved by EMSA and ChIP assays. Besides, the role of CNBP upon the identified genes was validated in loss-of-function experiments in developing zebrafish. We successfully confirmed that CNBP up-regulates tbx2b and smarca5, and down-regulates wnt5b gene expression. The highly stringent strategy used in this work allowed us to identify new CNBP target genes functionally important in different contexts of vertebrate embryonic development. Furthermore, it represents a novel approach toward understanding the biological function and regulatory networks involving CNBP in the biology of vertebrates.


Subject(s)
Adenosine Triphosphatases/metabolism , Embryonic Development/genetics , RNA-Binding Proteins/metabolism , T-Box Domain Proteins/metabolism , Wnt Proteins/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Base Sequence , Binding Sites , Computational Biology , Consensus Sequence/genetics , DNA/metabolism , G-Quadruplexes , Gene Expression Regulation, Developmental , Gene Library , Gene Regulatory Networks/genetics , Genome/genetics , Humans , Mice , Molecular Sequence Data , Reproducibility of Results , Wnt-5a Protein , Zebrafish/genetics
12.
Photosynth Res ; 115(1): 65-80, 2013 May.
Article in English | MEDLINE | ID: mdl-23649167

ABSTRACT

NADP-malic enzyme (NADP-ME) is involved in different metabolic pathways in several organisms due to the relevant physiological functions of the substrates and products of its reaction. In plants, it is one of the most important proteins that were recruited to fulfil key roles in C4 photosynthesis. Recent advances in genomics allowed the characterization of the complete set of NADP-ME genes from some C3 species, as Arabidopsis thaliana and Oryza sativa; however, the characterization of the complete NADP-ME family from a C4 species has not been performed yet. In this study, while taking advantage of the complete Zea mays genome sequence recently released, the characterization of the whole NADP-ME family is presented. The maize NADP-ME family is composed of five genes, two encoding plastidic NADP-MEs (ZmC4- and ZmnonC4-NADP-ME), and three cytosolic enzymes (Zmcyt1-, Zmcyt2-, and Zmcyt3-NADP-ME). The results presented clearly show that each maize NADP-ME displays particular organ distribution, response to stress stimuli, and differential biochemical properties. Phylogenetic footprinting studies performed with the NADP-MEs from several grasses, indicate that four members of the maize NADP-ME family share conserved transcription factor binding motifs with their orthologs, indicating conserved physiological functions for these genes in monocots. Based on the results obtained in this study, and considering the biochemical plasticity shown by the NADP-ME, it is discussed the relevance of the presence of a multigene family, in which each member encodes an isoform with particular biochemical properties, in the evolution of the C4 NADP-ME, improved to fulfil the requirements for an efficient C4 mechanism.


Subject(s)
Gene Expression Regulation, Plant , Malate Dehydrogenase/metabolism , Multigene Family , Zea mays/enzymology , Amino Acid Sequence , Binding Sites , Gene Expression , Kinetics , Malate Dehydrogenase/genetics , Molecular Sequence Data , Photosynthesis , Phylogeny , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/physiology , Plant Stems/enzymology , Plant Stems/genetics , Plant Stems/physiology , Protein Isoforms , Sequence Alignment , Stress, Physiological , Zea mays/genetics , Zea mays/physiology
13.
Electron. j. biotechnol ; 11(2): 20-29, Apr. 2008. ilus, graf, tab
Article in English | LILACS | ID: lil-522202

ABSTRACT

The persistence of CryIAb protein rhizosecreted in soil is important in the assessment of its environmental risk. Here we report that CryIAb protein from transgenic maize does not accumulate at high levels in soils. Levels of CryIAb protein rhizosecreted by three maize transgenic events (BT11, MON810 and 176) were studied in hydroponic cultures and found only in the MON810 and BT11 events but not in event 176 or control plants. Under field conditions, the cryIAb gene and a basal level of CryIAb protein was detected in soils from plots cultivated with transgenic and non-transgenic maize, possibly from Bacillus thuringiensis present in the soils.


Subject(s)
Bacillus thuringiensis , Proteins/isolation & purification , Proteins/analysis , Soil Analysis , Zea mays , Enzyme-Linked Immunosorbent Assay , Hydroponics , Plants, Genetically Modified , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...