Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(35): 32027-32042, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37692252

ABSTRACT

Excessive use of antimicrobial medications including antibiotics has led to the emerging menace of antimicrobial resistance, which, as per the World Health Organization (WHO), is among the top ten public health threats facing humanity, globally. This necessitates that innovative technologies be sought that can aid in the elimination of pathogens and hamper the spread of infections. Zinc oxide (ZnO) has multifunctionality owing to its extraordinary physico-chemical properties and functionality in a range of applications. In this research, ZnO nanoparticles (NPs) were synthesized from zinc nitrate hexahydrate, by a green synthesis approach using Cymbopogon citratus extract followed by characterization of the NPs. The obtained X-ray diffraction peaks of ZnO NPs matched with the standard JCPDS card (no. 89-510). The particles had a size of 20-24 nm, a wurtzite structure with a high crystallinity, and hexagonal rod-like shape. UV-Vis spectroscopy revealed absorption peaks between 369 and 374 nm of ZnO NPs synthesized from C. citratus extract confirming the formation of ZnO. Fourier transform infrared confirmed the ZnO NPs as strong absorption bands were observed in the range of 381-403 cm-1 corresponding to Zn-O bond stretching. Negative values of the highest occupied molecular orbital-lowest unoccupied molecular orbital for ZnO NPs indicated the good potential to form a stable ligand-protein complex. Docking results indicated favorable binding interaction between ZnO and DNA gyrase subunit b with a binding energy of -2.93 kcal/mol. ZnO NPs at various concentrations inhibited the growth of Escherichia coli and Staphylococcus aureus. Minimum inhibitory concentration values of ZnO NPs against E. coli and S. aureus were found to be 92.07 ± 0.13 and 88.13 ± 0.35 µg/mL, respectively, at a concentration of 2 mg/mL. AO/EB staining and fluorescence microscopy revealed the ability of ZnO NPs to kill E. coli and S. aureus cells. Through the findings of this study, it has been shown that C. citratus extract can be used in a green synthesis approach to generate ZnO NPs, which can be employed as alternatives to antibiotics and a tool to eliminate drug-resistant microbes in the future.

2.
Infect Drug Resist ; 15: 2713-2721, 2022.
Article in English | MEDLINE | ID: mdl-35668858

ABSTRACT

Introduction: In recent decades, the rate of infection with dengue virus (DENV) has risen significantly, now affecting nearly 400 million individuals annually. Dengue fever among humans is caused via specific mosquito vectors bites. Sporadic cases have been reported in Egypt. The goal of this study was to identify the serotype of the DENV outbreak in both human and mosquito vector along the coast of the Red Sea, Upper Egypt, in 2017. Identification of the serotype of the virus may help identify its source and assist in applying epidemiological and control measures. Materials and Methods: The current study was carried out in El Quseir City, Red Sea Governorate, Upper Egypt, on 144 patients complaining of symptoms indicative of dengue fever at the time of the 2017 Egypt outbreak. Human blood samples and the mosquito reservoirs were identified as having dengue virus infection serologically and molecularly. Results: Overall, 97 (67.4%) patients were positive for dengue virus IgM antibodies. Molecular examination of the human samples and pools of mosquitoes revealed that DENV-2 virus was the serotype responsible for the outbreak. Only one pool of female mosquitoes containing Aedes aegypti was infected with dengue fever virus (DENV-2). Conclusion: This was the first serotyping of the DENV responsible for dengue virus outbreak in Egypt in 2017. Determining the serotype of dengue virus can help to avoid and monitor outbreaks. The serotype identified in this study was DENV-2, while DENV-1 was the serotype found in the previous outbreak in 2015 in the province of Assiut. This study thus raises concerns that a new dengue serotype could have been introduced into Egypt. It is necessary for a comprehensive risk assessment to be carried out in the country, including an entomological survey, to assess the presence and potential geographical expansion of mosquito vectors there.

3.
J Bacteriol ; 203(23): e0018521, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34543107

ABSTRACT

Francisella tularensis is a Gram-negative bacterium that causes a fatal human disease known as tularemia. The Centers for Disease Control and Prevention have classified F. tularensis as a category A tier 1 select agent. The virulence mechanisms of Francisella are not entirely understood. Francisella possesses very few transcription regulators, and most of these regulate the expression of genes involved in intracellular survival and virulence. The F. tularensis genome sequence analysis reveals an AraC (FTL_0689) transcriptional regulator homologous to the AraC/XylS family of transcriptional regulators. In Gram-negative bacteria, AraC activates genes required for l-arabinose utilization and catabolism. The role of the FTL_0689 regulator in F. tularensis is not known. In this study, we characterized the role of FTL_0689 in the gene regulation of F. tularensis and investigated its contribution to intracellular survival and virulence. The results demonstrate that FTL_0689 in Francisella is not required for l-arabinose utilization. Instead, FTL_0689 specifically regulates the expression of the oxidative and global stress response, virulence, metabolism, and other key pathways genes required by Francisella when exposed to oxidative stress. The FTL_0689 mutant is attenuated for intramacrophage growth and virulence in mice. Based on the deletion mutant phenotype, FTL_0689 was termed osrR (oxidative stress response regulator). Altogether, this study elucidates the role of the osrR transcriptional regulator in tularemia pathogenesis. IMPORTANCE The virulence mechanisms of category A select agent Francisella tularensis, the causative agent of a fatal human disease known as tularemia, remain largely undefined. The present study investigated the role of a transcriptional regulator and its overall contribution to the oxidative stress resistance of F. tularensis. The results provide an insight into a novel gene regulatory mechanism, especially when Francisella is exposed to oxidative stress conditions. Understanding such Francisella- specific regulatory mechanisms will help identify potential targets for developing effective therapies and vaccines to prevent tularemia.


Subject(s)
AraC Transcription Factor/metabolism , Francisella tularensis/metabolism , Gene Expression Regulation, Bacterial/physiology , Oxidative Stress/physiology , Animals , AraC Transcription Factor/genetics , Down-Regulation , Francisella tularensis/pathogenicity , Gene Deletion , Genetic Complementation Test , Mice , Mice, Inbred C57BL , Tularemia/microbiology , Virulence
4.
PLoS One ; 14(3): e0213699, 2019.
Article in English | MEDLINE | ID: mdl-30870480

ABSTRACT

Francisella tularensis is a Gram-negative, facultative intracellular pathogen and the causative agent of a lethal human disease known as tularemia. Due to its extremely high virulence and potential to be used as a bioterror agent, F. tularensis is classified by the CDC as a Category A Select Agent. As an intracellular pathogen, F. tularensis during its intracellular residence encounters a number of oxidative and nitrosative stresses. The roles of the primary antioxidant enzymes SodB, SodC and KatG in oxidative stress resistance and virulence of F. tularensis live vaccine strain (LVS) have been characterized in previous studies. However, very fragmentary information is available regarding the role of peroxiredoxin of the AhpC/TSA family (annotated as AhpC) of F. tularensis SchuS4; whereas the role of AhpC of F. tularensis LVS in tularemia pathogenesis is not known. This study was undertaken to exhaustively investigate the role of AhpC in oxidative stress resistance of F. tularensis LVS and SchuS4. We report that AhpC of F. tularensis LVS confers resistance against a wide range of reactive oxygen and nitrogen species, and serves as a virulence factor. In highly virulent F. tularensis SchuS4 strain, AhpC serves as a key antioxidant enzyme and contributes to its robust oxidative and nitrosative stress resistance, and intramacrophage survival. We also demonstrate that there is functional redundancy among primary antioxidant enzymes AhpC, SodC, and KatG of F. tularensis SchuS4. Collectively, this study highlights the differences in antioxidant defense mechanisms of F. tularensis LVS and SchuS4.


Subject(s)
Antioxidants/physiology , Francisella tularensis/enzymology , Oxidative Stress , Peroxiredoxins/physiology , Tularemia/microbiology , Animals , Bacterial Proteins/physiology , Bacterial Vaccines/immunology , Francisella tularensis/pathogenicity , Genetic Complementation Test , Macrophages/immunology , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , Superoxide Dismutase/physiology , Tularemia/immunology , Vaccines, Attenuated/immunology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...