Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 7(1): 12635, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28974718

ABSTRACT

Cell-penetrating peptides (CPPs) uptake mechanism is still in need of more clarification to have a better understanding of their action in the mediation of oligonucleotide transfection. In this study, the effect on early events (1 h treatment) in transfection by PepFect14 (PF14), with or without oligonucleotide cargo on gene expression, in HeLa cells, have been investigated. The RNA expression profile was characterized by RNA sequencing and confirmed by qPCR analysis. The gene regulations were then related to the biological processes by the study of signaling pathways that showed the induction of autophagy-related genes in early transfection. A ligand library interfering with the detected intracellular pathways showed concentration-dependent effects on the transfection efficiency of splice correction oligonucleotide complexed with PepFect14, proving that the autophagy process is induced upon the uptake of complexes. Finally, the autophagy induction and colocalization with autophagosomes have been confirmed by confocal microscopy and transmission electron microscopy. We conclude that autophagy, an inherent cellular response process, is triggered by the cellular uptake of CPP-based transfection system. This finding opens novel possibilities to use autophagy modifiers in future gene therapy.


Subject(s)
Autophagy/genetics , Cell-Penetrating Peptides/genetics , Lipopeptides/genetics , RNA, Small Interfering/genetics , Cell Membrane/genetics , Cell Membrane/ultrastructure , Genetic Therapy , HeLa Cells , Humans , Microscopy, Electron, Transmission , Oligonucleotides , Transfection
2.
Bioconjug Chem ; 28(3): 782-792, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28209057

ABSTRACT

Modifying cell-penetrating peptides (CPPs) with fatty acids has long been used to improve peptide-mediated nucleic acid delivery. In this study we have revisited this phenomenon with a systematic approach where we developed a structure-activity relationship to describe the role of the acyl chain length in the transfection process. For that we took a well-studied CPP, PepFect14, as the basis and varied its N-terminal acyl chain length from 2 to 22 carbons. To evaluate the delivery efficiency, the peptides were noncovalently complexed with a splice-correcting oligonucleotide (SCO) and tested in HeLa pLuc705 reporter cell line. Our results demonstrate that biological splice-correction activity emerges from acyl chain of 12 carbons and increases linearly with each additional carbon. To assess the underlying factors regarding how the transfection efficacy of these complexes is dependent on hydrophobicity, we used an array of different methods. For the functionally active peptides (C12-22) there was no apparent difference in their physicochemical properties, including complex formation efficiency, hydrodynamic size, and zeta potential. Moreover, membrane activity studies with peptides and their complexes with SCOs confirmed that the toxicity of the complexes at higher molar ratios is mainly caused by the free fraction of the peptide which is not incorporated into the peptide/oligonucleotide complexes. Finally, we show that the increase in splice-correcting activity correlates with the ability of the complexes to associate with the cells. Collectively these studies lay the ground work for how to design highly efficient CPPs and how to optimize their oligonucleotide complexes for lowest toxicity without losing efficiency.


Subject(s)
Cell-Penetrating Peptides/chemistry , Fatty Acids/chemistry , Lipopeptides/chemistry , Oligonucleotides/administration & dosage , Transfection/methods , Acylation , Amino Acid Sequence , Animals , Cattle , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Oligonucleotides/genetics
3.
J Control Release ; 241: 135-143, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27664329

ABSTRACT

As the field of gene therapy progresses, an increasingly urgent need has arisen for efficient and non-toxic vectors for the in vivo delivery of nucleic acids. Cell-penetrating peptides (CPP) are very efficient transfection reagents in vitro, however, their application in vivo needs improvement. To enhance in vivo transfection we designed various CPPs based on previous knowledge of internalization studies and physiochemical properties of NickFect (NF) nanoparticles. We show that increment of the helicity of these Transportan10 analogues improves the transfection efficiency. We rationally design by modifying the net charge and the helicity of the CPP a novel amphipathic α-helical peptide NF55 for in vivo application. NF55 condenses DNA into stable nanoparticles that are resistant to protease degradation, promotes endosomal escape, and transfects the majority of cells in a large cell population. We demonstrate that NF55 mediates DNA delivery in vivo with gene induction efficiency that is comparable to commercial transfection reagents. In addition to gene induction in healthy mice, NF55/DNA nanoparticles showed promising tumor transfection in various mouse tumor models, including an intracranial glioblastoma model. The efficiency of NF55 to convey DNA specifically into tumor tissue increased even further after coupling a PEG2000 to the peptide via a disulphide-bond. Furthermore, a solid formulation of NF55/DNA displayed an excellent stability profile without additives or special storage conditions. Together, its high transfection efficacy and stability profile make NF55 an excellent vector for the delivery of DNA in vivo.


Subject(s)
Cell-Penetrating Peptides/chemistry , DNA/administration & dosage , Drug Carriers/chemistry , Gene Transfer Techniques , Nanoparticles/chemistry , Amino Acid Sequence , Cell Survival/drug effects , DNA/genetics , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Plasmids , Protein Conformation , Transfection
4.
Mol Ther Nucleic Acids ; 5: e290, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-27111416

ABSTRACT

The advantages of lipid-based transfection reagents have permitted their widespread use in molecular biology and gene therapy. This study outlines the effect of cryo-manipulation of a cationic lipid-based formulation, Lipofectamine 2000, which, after being frozen and thawed, showed orders of magnitude higher plasmid delivery efficiency throughout eight different cell lines, without compromising cell viability. Increased transfection efficiency with the freeze-thawed reagent was also seen with 2'-O-methyl phosphorothioate oligonucleotide delivery and in a splice-correction assay. Most importantly, a log-scale improvement in gene delivery using the freeze-thawed reagent was seen in vivo. Using three different methods, we detected considerable differences in the polydispersity of the different nucleic acid complexes as well as observed a clear difference in their surface spreading and sedimentation, with the freeze-thawed ones displaying substantially higher rate of dispersion and deposition on the glass surface. This hitherto overlooked elevated potency of the freeze-thawed reagent facilitates the targeting of hard-to-transfect cells, accomplishes higher transfection rates, and decreases the overall amount of reagent needed for delivery. Additionally, as we also saw a slight increase in plasmid delivery using other freeze-thawed transfection reagents, we postulate that freeze-thawing might prove to be useful for an even wider variety of transfection reagents.

5.
Mol Pharm ; 13(1): 172-9, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26561739

ABSTRACT

Nucleic acids are highly promising candidates for the treatment of various genetic diseases. However, due to the large size and negative charge, nucleic acids are not efficiently taken up by cells, and thus, their clinical potential remains limited so far. Therefore, various delivery vehicles have been designed to assist the cellular uptake of nucleic acids. Among these, cell-penetrating peptides (CPPs) have gained increasing popularity as efficient and nontoxic delivery vectors. CPPs can be coupled to nucleic acids either by covalent or noncovalent association. Noncovalent coupling, which is based on the formation of nanoparticle-like nanocomplexes (NP), has received much attention in recent years, and the number of studies employing the strategy is explosively increasing due to the high therapeutic potential. However, the properties of CPP/nucleic acid NPs have not been characterized in sufficient detail yet. We performed a comprehensive analysis of the size and morphology of nucleic acid nanoparticles with novel transfection peptides, PepFects (PFs) and NickFects (NFs), using negative staining transmission electron microscopy (TEM). In addition, we examined whether the attachment of fluorescence or (nano)gold label to nucleic acid affects the nanocomplex formation or its morphology. We demonstrated that transportan-10-based new generation CPPs from PF and NF families condense nucleic acids to NPs of homogeneous size and shape. The size and shape of assembled nanoparticles depend on the type of the complexed nucleic acid and the sequence of the used peptide, whereas the label on the nucleic acid does not influence the gross characteristics of formed NPs.


Subject(s)
Cell-Penetrating Peptides/chemistry , Nanoparticles/chemistry , Nucleic Acids/chemistry , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure
6.
Biochim Biophys Acta ; 1848(12): 3205-16, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26409186

ABSTRACT

Cell penetrating peptides are efficient tools to deliver various bioactive cargos into cells, but their exact functioning mechanism is still debated. Recently, we showed that a delivery peptide PepFect14 condenses oligonucleotides (ON) into negatively charged nanocomplexes that are taken up by cells via class A scavenger receptors (SR-As). Here we unraveled the uptake mechanism and intracellular trafficking of PF14-ON nanocomplexes in HeLa cells. Macropinocytosis and caveolae-mediated endocytosis are responsible for the intracellular functionality of nucleic acids packed into nanocomplexes. However, only a negligible fraction of the complexes were trafficked to endoplasmic reticulum or Golgi apparatus - the common destinations of caveolar endocytosis. Neither were the PF14-SCO nanocomplexes routed to endo-lysosomal pathway, and they stayed in vesicles with slightly acidic pH, which were not marked with LysoSensor. "Naked" ON, in contrary, was rapidly targeted to acidic vesicles and lysosomes. The transmission electron microscopy analysis of interactions between SR-As and PF14-ON nanocomplexes on ultrastructural level revealed that nanocomplexes localized on the plasma membrane in close proximity to SR-As and their colocalization is retained in cells, suggesting that PF14-ON complexes associate with targeted receptors.


Subject(s)
Endocytosis , Nanostructures , Nucleic Acids/metabolism , Receptors, Scavenger/metabolism , Biological Transport , Cell Membrane/metabolism , Endosomes/metabolism , HeLa Cells , Humans
7.
Methods Mol Biol ; 1324: 149-62, 2015.
Article in English | MEDLINE | ID: mdl-26202268

ABSTRACT

Cell-penetrating peptides (CPPs) are efficient non-viral delivery vectors for bioactive cargos, both in vitro and in vivo. Cargo molecules can be attached to CPPs either via covalent conjugation or by complex formation using co-incubation, which is typically used for charged molecules such as nucleic acids. The latter technique is efficiently used in case of CADY, MPG, Pep peptides, NickFects and PepFects that condense oligonucleotides (ONs) into nanoparticles, which efficiently enter cells and induce biological effects. Despite being highly promising candidates for developing new-generation medicines, CPPs' internalization mechanisms and intracellular trafficking are still far from being well-understood, and obtained data are often controversial. Transmission electron microscopy (TEM) is an informative and valuable tool for examining the mechanisms of CPP-ON nanoparticles. TEM enables to visualize nanoparticles or single molecules labeled with Nanogold™ tag, and follow their association with cells and intracellular localization. In this chapter, we present methods for preparation of CPP-ON nanoparticles for TEM analysis and for examination of their interactions with the plasma membrane, and subsequent cellular uptake either by direct translocation or endocytosis. In case of endocytosis, ONs have to be released from endosomes and reach their target site in nucleus or cytoplasm to reveal their activity. TEM enables to estimate when the endosomal escape begins, from which type of endosomal vesicles it occurs, whether the vesicles are broken, or nanocomplexes translocate across the membrane into cytosol. Since single ONs could be followed, the time-frame that is necessary for the splice-switching nucleotides to translocate into cell nucleus can be analyzed by TEM.


Subject(s)
Cell-Penetrating Peptides/metabolism , Endocytosis , Microscopy, Electron, Transmission/methods , Nanoparticles/metabolism , Nucleic Acids/administration & dosage , Oligonucleotides/administration & dosage , Gold/chemistry , Gold/metabolism , HeLa Cells , Humans , Nanoparticles/chemistry , Nucleic Acids/chemistry , Nucleic Acids/metabolism , Oligonucleotides/chemistry , Oligonucleotides/metabolism , Staining and Labeling/methods , Tissue Embedding/methods
8.
Bioconjug Chem ; 24(10): 1721-32, 2013 Oct 16.
Article in English | MEDLINE | ID: mdl-23981119

ABSTRACT

In the current work we characterize the uptake mechanism of two NickFect family members, NF51 and NF1, related to the biological activity of transfected plasmid DNA (pDNA). Both vectors condense pDNA into small negatively charged nanoparticles that transfect HeLa cells with equally high efficacy and the delivery is mediated by SCARA3 and SCARA5 receptors. NF1 condenses DNA into less homogeneous and less stable nanoparticles than NF51. NF51/pDNA nanoparticles enter the cells via macropinocytosis, while NF1/pDNA complexes use clathrin- or caveolae-mediated endocytosis and macropinocytosis. Analysis of separated endosomal compartments uncovered lysomotropic properties of NF51 that was also proven by cotransfection with chloroquine. In summary we characterize how radical modifications in peptides, such as introducing a kink in the structure of NF51 or including extra negative charge by phospho-tyrosine substitution in NF1, resulted in equally high efficacy for gene delivery, although this efficacy is achieved by using differential transfection pathways.


Subject(s)
DNA/administration & dosage , Peptides/chemistry , Plasmids/administration & dosage , Transfection , Clathrin/metabolism , DNA/chemistry , DNA/genetics , Endocytosis , HeLa Cells , Humans , Nanoparticles/chemistry , Peptides/chemical synthesis , Peptides/metabolism , Plasmids/chemistry , Plasmids/genetics
9.
Adv Drug Deliv Rev ; 65(8): 1031-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23624037

ABSTRACT

For widening the arsenal of protein and peptide therapeutics that act within cells, their cell-entry mechanisms, intracellular trafficking and distribution need to be characterized in detail. Immunofluorescence microscopy has been a prevalent tool for these studies. However, due to the limited resolution, it is often complemented with other methods. This article focuses on the perspectives of electron microscopy in tracking the intracellular delivery and trafficking of proteins, peptides and their carriers. This review introduces the electron microscopy techniques and labeling methods currently used for studying the cellular whereabouts of peptides and proteins with a focus on their intracellular trafficking. Since cell-penetrating peptides have widely been harnessed as carriers for proteins and peptides, and their usage is rapidly expanding, a particular emphasis has been placed on their applications and cell-entry mechanisms.


Subject(s)
Peptides/metabolism , Proteins/metabolism , Biological Transport , Endocytosis , Humans , Microscopy, Electron, Transmission , Pharmaceutical Preparations/metabolism , Protein Transport
10.
Biochim Biophys Acta ; 1828(5): 1365-73, 2013 May.
Article in English | MEDLINE | ID: mdl-23357356

ABSTRACT

Harnessing of a branched structure is a novel approach in the design of cell-penetrating peptides and it has provided highly efficient transfection reagents for intracellular delivery of nucleic acids. The new stearylated TP10 analogs, NickFects, condense plasmid DNA, splice correcting oligonucleotides and short interfering RNAs into stable nanoparticles with a size of 62-160nm. Such nanoparticles have a negative surface charge (-11 to -18mV) in serum containing medium and enable highly efficient gene expression, splice correction and gene silencing. One of the novel peptides, NickFect51 is capable of transfecting plasmid DNA into a large variety of cell lines, including refractory suspension and primary cells and in several cases exceeds the transfection level of commercially available reagent Lipofectamine™ 2000 without any cytotoxic side effects. Additionally we demonstrate the advantages of NickFect51 in a protein production system, QMCF technology, for expression and production of recombinant proteins in hardly transfectable suspension cells.


Subject(s)
Cell-Penetrating Peptides/chemistry , Gene Transfer Techniques , Genetic Vectors/genetics , Nucleic Acids/genetics , Amino Acid Sequence , Animals , CHO Cells , Cell Line, Tumor , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Cells, Cultured , Cricetinae , Cricetulus , Genetic Vectors/chemistry , HEK293 Cells , HeLa Cells , Humans , Jurkat Cells , Luciferases/genetics , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Oligonucleotides/genetics , Plasmids/chemistry , Plasmids/genetics , RNA, Small Interfering/genetics , Stearic Acids/chemistry , Transfection/methods
11.
Mol Pharm ; 10(1): 199-210, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23186360

ABSTRACT

The successful applicability of gene therapy approaches will heavily rely on the development of efficient and safe nonviral gene delivery vectors, for example, cell-penetrating peptides (CPPs). CPPs can condense oligonucleotides and plasmid DNA (pDNA) into nanoparticles, thus allowing the transfection of genetic material into cells. However, despite few promising attempts, CPP-mediated pDNA delivery has been relatively inefficient due to the unfavorable nanoparticle characteristics or the nanoparticle entrapment to endocytic compartments. In many cases, both of these drawbacks could be alleviated by modifying CPPs with a stearic acid residue, as demonstrated in the delivery of both the pDNA and the short oligonucleotides. In this study, PepFect14 (PF14) peptide, previously used for the transport of shorter oligonucleotides, is demonstrated to be suited also for the delivery of pDNA. It is shown that PF14 forms stable nanoparticles with pDNA with a negative surface charge and size of around 130-170 nm. These nanoparticles facilitate efficient gene delivery and expression in a variety of regular adherent cell lines and also in difficult-to-transfect primary cells. Uptake studies indicate that PF14/pDNA nanoparticles are utilizing class A scavenger receptors (SCARA) and caveolae-mediated endocytosis as the main route for cellular internalization. Conclusively, PF14 is an efficient nonviral vector for gene delivery.


Subject(s)
Cell-Penetrating Peptides/administration & dosage , Cell-Penetrating Peptides/genetics , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Lipopeptides/administration & dosage , Lipopeptides/genetics , Animals , CHO Cells , Cell Culture Techniques , Cell-Penetrating Peptides/metabolism , Cricetinae , DNA/genetics , Endocytosis/genetics , Genetic Vectors/metabolism , HEK293 Cells , Humans , Lipopeptides/metabolism , Nanoparticles/administration & dosage , Oligonucleotides/administration & dosage , Oligonucleotides/genetics , Oligonucleotides/metabolism , Particle Size , Plasmids/genetics , Plasmids/metabolism , Transfection/methods
12.
Mol Ther ; 20(3): 525-33, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22233581

ABSTRACT

Short regulatory oligonucleotides (ONs) have a great therapeutic potential for the modulation of gene expression due to their high specificity and low toxicity. The major obstacles for in vivo clinical applications of ONs are the poor permeability of plasma membrane to nucleic acids and the sensitivity of ONs to enzymatic degradation. Hence, various delivery vehicles have been developed to ensure the transduction of ONs into cells. Among these, the cell-penetrating peptides (CPPs) have gained quickly broadening popularity as promising nonviral transmembrane delivery vectors. For coupling of nucleic acids to CPPs, two distinct strategies may be applied-covalent and noncovalent. The majority of earlier studies have used covalent coupling of CPPs to ONs. However, the number of studies demonstrating very high therapeutic potential of noncovalent complexes of ONs with novel CPP-based delivery vehicles is explosively increasing. In this review, the recent developments in the application of CPP-mediated oligonucleotide delivery by noncovalent strategy will be discussed.


Subject(s)
Cell-Penetrating Peptides/chemistry , Drug Delivery Systems , Oligonucleotides, Antisense/administration & dosage , RNA, Small Interfering/administration & dosage , Animals , Cell-Penetrating Peptides/metabolism , Gene Transfer Techniques , Humans , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/metabolism , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...