Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Proc Biol Sci ; 290(2009): 20231476, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37848062

ABSTRACT

Reef-building crustose coralline algae (CCA) are known to facilitate the settlement and metamorphosis of scleractinian coral larvae. In recent decades, CCA coverage has fallen globally and degrading environmental conditions continue to reduce coral survivorship, spurring new restoration interventions to rebuild coral reef health. In this study, naturally produced chemical compounds (metabolites) were collected from two pantropical CCA genera to isolate and classify those that induce coral settlement. In experiments using four ecologically important Caribbean coral species, we demonstrate the applicability of extracted, CCA-derived metabolites to improve larval settlement success in coral breeding and restoration efforts. Tissue-associated CCA metabolites induced settlement of one coral species, Orbicella faveolata, while metabolites exuded by CCA (exometabolites) induced settlement of three species: Acropora palmata, Colpophyllia natans and Orbicella faveolata. In a follow-up experiment, CCA exometabolites fractionated and preserved using two different extraction resins induced the same level of larval settlement as the unfractionated positive control exometabolites. The fractionated CCA exometabolite pools were characterized using liquid chromatography tandem mass spectrometry, yielding 145 distinct molecular subnetworks that were statistically defined as CCA-derived and could be classified into 10 broad chemical classes. Identifying these compounds can reveal their natural prevalence in coral reef habitats and facilitate the development of new applications to enhance larval settlement and the survival of coral juveniles.


Subject(s)
Anthozoa , Animals , Larva , Cues , Coral Reefs , Ecosystem
2.
PLoS One ; 17(9): e0274088, 2022.
Article in English | MEDLINE | ID: mdl-36095015

ABSTRACT

Larval settlement in wave-dominated, nearshore environments is the most critical life stage for a vast array of marine invertebrates, yet it is poorly understood and virtually impossible to observe in situ. Using a custom-built flume tank that mimics the oscillatory fluid flow over a shallow coral reef, we isolated the effect of millimeter-scale benthic topography and showed that it increases the settlement of slow-swimming coral larvae by an order of magnitude relative to flat substrates. Particle tracking velocimetry of flow fields revealed that millimeter-scale ridges introduced regions of flow recirculation that redirected larvae toward the substrate surface and decreased the local fluid speed, effectively increasing the window of time for larvae to settle. Regions of recirculation were quantified using the Q-criterion method of vortex identification and correlated with the settlement locations of larvae for the first time. In agreement with experiments, computational fluid dynamics modeling and agent-based larval simulations also showed significantly higher settlement onto ridged substrates. Additionally, in contrast to previous reports on the effect of micro-scale substrate topography, we found that these topographies did not produce key hydrodynamic features linked to increased settlement. These findings highlight how physics-based substrate design can create new opportunities to increase larval recruitment for ecosystem restoration.


Subject(s)
Anthozoa , Animals , Coral Reefs , Ecosystem , Larva , Swimming
3.
Sci Adv ; 8(35): eabn0707, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36044584

ABSTRACT

Since 1892, it has been widely assumed that somatic mutations are evolutionarily irrelevant in animals because they cannot be inherited by offspring. However, some nonbilaterians segregate the soma and germline late in development or never, leaving the evolutionary fate of their somatic mutations unknown. By investigating uni- and biparental reproduction in the coral Acropora palmata (Cnidaria, Anthozoa), we found that uniparental, meiotic offspring harbored 50% of the 268 somatic mutations present in their parent. Thus, somatic mutations accumulated in adult coral animals, entered the germline, and were passed on to swimming larvae that grew into healthy juvenile corals. In this way, somatic mutations can increase allelic diversity and facilitate adaptation across habitats and generations in animals.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Biological Evolution , Coral Reefs , Ecosystem , Germ Cells , Mutation
4.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: mdl-34493583

ABSTRACT

Assisted gene flow (AGF) is a conservation intervention to accelerate species adaptation to climate change by importing genetic diversity into at-risk populations. Corals exemplify both the need for AGF and its technical challenges; corals have declined in abundance, suffered pervasive reproductive failures, and struggled to adapt to climate change, yet mature corals cannot be easily moved for breeding, and coral gametes lose viability within hours. Here, we report the successful demonstration of AGF in corals using cryopreserved sperm that was frozen for 2 to 10 y. We fertilized Acropora palmata eggs from the western Caribbean (Curaçao) with cryopreserved sperm from genetically distinct populations in the eastern and central Caribbean (Florida and Puerto Rico, respectively). We then confirmed interpopulation parentage in the Curaçao-Florida offspring using 19,696 single-nucleotide polymorphism markers. Thus, we provide evidence of reproductive compatibility of a Caribbean coral across a recognized barrier to gene flow. The 6-mo survival of AGF offspring was 42%, the highest ever achieved in this species, yielding the largest wildlife population ever raised from cryopreserved material. By breeding a critically endangered coral across its range without moving adults, we show that AGF using cryopreservation is a viable conservation tool to increase genetic diversity in threatened marine populations.


Subject(s)
Anthozoa/genetics , Gene Flow/genetics , Spermatozoa/physiology , Animals , Conservation of Natural Resources/methods , Coral Reefs , Cryopreservation/methods , Endangered Species , Fertilization/genetics , Florida , Genetics, Population/methods , Germ Cells/physiology , Male , Puerto Rico , Reproduction/genetics
5.
Science ; 365(6457): 987-988, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31488677
6.
Mol Ecol ; 28(1): 141-155, 2019 01.
Article in English | MEDLINE | ID: mdl-30506836

ABSTRACT

Theory suggests that the direct transmission of beneficial endosymbionts (mutualists) from parents to offspring (vertical transmission) in animal hosts is advantageous and evolutionarily stable, yet many host species instead acquire their symbionts from the environment (horizontal acquisition). An outstanding question in marine biology is why some scleractinian corals do not provision their eggs and larvae with the endosymbiotic dinoflagellates that are necessary for a juvenile's ultimate survival. We tested whether the acquisition of photosynthetic endosymbionts (family Symbiodiniaceae) during the planktonic larval stage was advantageous, as is widely assumed, in the ecologically important and threatened Caribbean reef-building coral Orbicella faveolata. Following larval acquisition, similar changes occurred in host energetic lipid use and gene expression regardless of whether their symbionts were photosynthesizing, suggesting the symbionts did not provide the energetic benefit characteristic of the mutualism in adults. Larvae that acquired photosymbionts isolated from conspecific adults on their natal reef exhibited a reduction in swimming, which may interfere with their ability to find suitable settlement substrate, and also a decrease in survival. Larvae exposed to two cultured algal species did not exhibit differences in survival, but decreased their swimming activity in response to one species. We conclude that acquiring photosymbionts during the larval stage confers no advantages and can in fact be disadvantageous to this coral host. The timing of symbiont acquisition appears to be a critical component of a host's life history strategy and overall reproductive fitness, and this timing itself appears to be under selective pressure.


Subject(s)
Anthozoa/physiology , Biological Evolution , Ecology , Symbiosis/genetics , Animals , Anthozoa/genetics , Caribbean Region , Coral Reefs , Dinoflagellida/genetics , Dinoflagellida/growth & development , Larva/genetics , Photosynthesis/genetics
7.
PLoS One ; 13(1): e0189355, 2018.
Article in English | MEDLINE | ID: mdl-29309413

ABSTRACT

To inform a community-based ocean zoning initiative, we conducted an intensive ecological assessment of the marine ecosystems of Barbuda, West Indies. We conducted 116 fish and 108 benthic surveys around the island, and measured the abundance and size structure of lobsters and conch at 52 and 35 sites, respectively. We found that both coral cover and fish biomass were similar to or lower than levels observed across the greater Caribbean; live coral cover and abundance of fishery target species, such as large snappers and groupers, was generally low. However, Barbuda lacks many of the high-relief forereef areas where similar work has been conducted in other Caribbean locations. The distribution of lobsters was patchy, making it difficult to quantify density at the island scale. However, the maximum size of lobsters was generally larger than in other locations in the Caribbean and similar to the maximum size reported 40 years ago. While the lobster population has clearly been heavily exploited, our data suggest that it is not as overexploited as in much of the rest of the Caribbean. Surveys of Barbuda's Codrington Lagoon revealed many juvenile lobsters, but none of legal size (95 mm carapace length), suggesting that the lagoon functions primarily as nursery habitat. Conch abundance and size on Barbuda were similar to that of other Caribbean islands. Our data suggest that many of the regional threats observed on other Caribbean islands are present on Barbuda, but some resources-particularly lobster and conch-may be less overexploited than on other Caribbean islands. Local management has the potential to provide sustainability for at least some of the island's marine resources. We show that a rapid, thorough ecological assessment can reveal clear conservation opportunities and facilitate rapid conservation action by providing the foundation for a community-driven policymaking process at the island scale.


Subject(s)
Ecosystem , Fisheries , Marine Biology , Oceans and Seas , Animals , Antigua and Barbuda , Biodiversity , Conservation of Natural Resources
8.
BMC Ecol ; 15: 9, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25887933

ABSTRACT

BACKGROUND: The Caribbean pillar coral Dendrogyra cylindrus was recently listed as a threatened species under the United States Endangered Species Act. One of the major threats to this species is its low, virtually undetectable recruitment rate. To our knowledge, sexually-produced recruits have never been found in over 30 years of surveys of Caribbean reefs. Until recently, the reproductive behavior of D. cylindrus was uncharacterized, limiting efforts to study its early life history, identify population bottlenecks, and conduct outplanting projects with sexually-produced offspring. In Curaçao, we observed the spawning behavior of this species over three years and five lunar cycles. We collected gametes from spawning individuals on three occasions and attempted to rear larvae and primary polyp settlers. RESULTS: Here we describe successful fertilization methods for D. cylindrus and we document rapid embryonic development. We describe the successful propagation of embryos to the swimming larvae stage, the first settlement of larvae in the laboratory, and the survival of primary polyp settlers for over seven months. We show that spawning times are highly predictable from year to year relative to the lunar cycle and local sunset times. We use colony-level data to confirm that males begin spawning before females. We also provide the first reports of split-spawning across months in this species. CONCLUSIONS: Together, our findings of consistent spawning times, split-spawning, rapid embryonic development, and remarkable robustness of larvae and settlers now enable expanded research on the early life history and settlement ecology of D. cylindrus. This will help biologists to identify the population bottlenecks in nature that underlie low recruitment rates. Further, the settlement of D. cylindrus larvae in the laboratory now makes out-planting for restoration more feasible. Asynchronous spawning times and rapid embryonic development may have important consequences for population biology, connectivity, and management, by affecting fertilization dynamics and larval dispersal distances. We argue that a precautionary approach to conservation is warranted, given this species' peculiar life history traits and still-unresolved population structure. Overall, the natural history and husbandry contributions presented here should facilitate accelerated research and conservation of this threatened coral.


Subject(s)
Anthozoa/physiology , Endangered Species , Animals , Caribbean Region , Conservation of Natural Resources , Female , Fertilization , Germ Cells/physiology , Larva/growth & development , Male , Reproduction
9.
Ecology ; 94(9): 1966-76, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24279268

ABSTRACT

When juveniles must tolerate harsh environments early in life, the disproportionate success of certain phenotypes across multiple early life stages will dramatically influence adult community composition and dynamics. In many species, large offspring have a higher tolerance for stressful environments than do smaller conspecifics (parental effects). However, we have a poor understanding of whether the benefits of increased parental investment carry over after juveniles escape harsh environments or progress to later life stages (latent effects). To investigate whether parental effects and latent effects interactively influence offspring success, we determined the degree to which latent effects of harsh abiotic conditions are mediated by offspring size in two stony coral species. Larvae of both species were sorted by size class and exposed to relatively high-temperature or low-salinity conditions. Survivorship was quantified for six days in these stressful environments, after which surviving larvae were placed in ambient conditions and evaluated for their ability to settle and metamorphose. We subsequently assessed long-term post-settlement survival of one species in its natural environment. Following existing theory, we expected that, within and between species, larger offspring would have a higher tolerance for harsh environmental conditions than smaller offspring. We found that large size did enhance offspring performance in each species. However, large offspring size within a species did not reduce the proportional, negative latent effects of harsh larval environments. Furthermore, the coral species that produces larger offspring was more, not less, prone to negative latent effects. We conclude that, within species, large offspring size does not increase resistance to latent effects. Comparing between species, we conclude that larger offspring size does not inherently confer greater robustness, and we instead propose that other life history characteristics such as larval duration better predict the tolerance of offspring to harsh and variable abiotic conditions. Additionally, when considering how stressful environments influence offspring performance, studies that only evaluate direct effects may miss crucial downstream (latent) effects on juveniles that have significant consequences for long-term population dynamics.


Subject(s)
Anthozoa/physiology , Ecosystem , Life Cycle Stages , Adaptation, Physiological , Animals , Larva/physiology , Salinity , Seawater/chemistry , Temperature , Time
10.
Oecologia ; 171(2): 417-25, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22945506

ABSTRACT

The mechanisms by which algae disperse across space on coral reefs are poorly known. We investigated the ability of four common Caribbean herbivorous fish species to disperse viable algal fragments through consumption of macroalgae and subsequent defecation. Fragments of all major algal taxa (Phaeophyta, Rhodophyta, and Chlorophyta) were found in 98.7 % of the fecal droppings of all fish species; however, the ability to survive gut passage and reattach to a substrate differed between algal taxa. While survival and reattachment approached zero for Phaeophyta and Chlorophyta, 76.4 % of the fragments belonging to the group Rhodophyta (mostly species in the order Gelidiaceae) survived gut passage, and were able to grow and reattach to the substrate by forming new rhizoids. Our results thus show that Gelidid algal species are dispersed by swimming herbivores. While the relative contribution of this mechanism to overall algal dispersal and recruitment in a wider ecological context remains unknown, our findings illustrate a previously undescribed mechanism of algal dispersal on coral reefs which is analogous to the dispersal of terrestrial plants, plant fragments, and seeds via herbivore ingestion and defecation.


Subject(s)
Chlorophyta , Phaeophyceae , Plant Dispersal , Rhodophyta , Animals , Coral Reefs , Ecology , Fishes , Herbivory , Survival
11.
Proc Biol Sci ; 279(1733): 1655-64, 2012 Apr 22.
Article in English | MEDLINE | ID: mdl-22090385

ABSTRACT

Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the reef-building coral Montastraea annularis and four types of benthic algae. The macroalgae Dictyota bartayresiana and Halimeda opuntia, as well as a mixed consortium of turf algae, caused hypoxia on the adjacent coral tissue. Turf algae were also associated with major shifts in the bacterial communities at the interaction zones, including more pathogens and virulence genes. In contrast to turf algae, interactions with crustose coralline algae (CCA) and M. annularis did not appear to be antagonistic at any scale. These zones were not hypoxic, the microbes were not pathogen-like and the abundance of coral-CCA interactions was positively correlated with per cent coral cover. We propose a model in which fleshy algae (i.e. some species of turf and fleshy macroalgae) alter benthic competition dynamics by stimulating bacterial respiration and promoting invasion of virulent bacteria on corals. This gives fleshy algae a competitive advantage over corals when human activities, such as overfishing and eutrophication, remove controls on algal abundance. Together, these results demonstrate the intricate connections and mechanisms that structure coral reefs.


Subject(s)
Anthozoa/physiology , Chlorophyta/physiology , Phaeophyceae/physiology , Seawater/microbiology , Animals , Cell Hypoxia , Coral Reefs , Models, Theoretical , Population Dynamics
12.
Environ Microbiol ; 13(5): 1192-204, 2011 May.
Article in English | MEDLINE | ID: mdl-21272183

ABSTRACT

The coral reef benthos is primarily colonized by corals and algae, which are often in direct competition with one another for space. Numerous studies have shown that coral-associated Bacteria are different from the surrounding seawater and are at least partially species specific (i.e. the same bacterial species on the same coral species). Here we extend these microbial studies to four of the major ecological functional groups of algae found on coral reefs: upright and encrusting calcifying algae, fleshy algae, and turf algae, and compare the results to the communities found on the reef-building coral Montastraea annularis. It was found using 16S rDNA tag pyrosequencing that the different algal genera harbour characteristic bacterial communities, and these communities were generally more diverse than those found on corals. While the majority of coral-associated Bacteria were related to known heterotrophs, primarily consuming carbon-rich coral mucus, algal-associated communities harboured a high percentage of autotrophs. The majority of algal-associated autotrophic Bacteria were Cyanobacteria and may be important for nitrogen cycling on the algae. There was also a rich diversity of photosynthetic eukaryotes associated with the algae, including protists, diatoms, and other groups of microalgae. Together, these observations support the hypothesis that coral reefs are a vast landscape of distinctive microbial communities and extend the holobiont concept to benthic algae.


Subject(s)
Anthozoa/microbiology , Biodiversity , Coral Reefs , Cyanobacteria/genetics , Microalgae/microbiology , Animals , Carbon/metabolism , Caribbean Region , Cyanobacteria/classification , Cyanobacteria/growth & development , Gene Library , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA
13.
PLoS One ; 5(5): e10660, 2010 May 14.
Article in English | MEDLINE | ID: mdl-20498831

ABSTRACT

Free-swimming larvae of tropical corals go through a critical life-phase when they return from the open ocean to select a suitable settlement substrate. During the planktonic phase of their life cycle, the behaviours of small coral larvae (<1 mm) that influence settlement success are difficult to observe in situ and are therefore largely unknown. Here, we show that coral larvae respond to acoustic cues that may facilitate detection of habitat from large distances and from upcurrent of preferred settlement locations. Using in situ choice chambers, we found that settling coral larvae were attracted to reef sounds, produced mainly by fish and crustaceans, which we broadcast underwater using loudspeakers. Our discovery that coral larvae can detect and respond to sound is the first description of an auditory response in the invertebrate phylum Cnidaria, which includes jellyfish, anemones, and hydroids as well as corals. If, like settlement-stage reef fish and crustaceans, coral larvae use reef noise as a cue for orientation, the alleviation of noise pollution in the marine environment may gain further urgency.


Subject(s)
Anthozoa/physiology , Movement/physiology , Sound , Animals , Larva/physiology
14.
Environ Microbiol ; 10(9): 2277-86, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18479440

ABSTRACT

The coral holobiont is the integrated assemblage of the coral animal, its symbiotic algae, protists, fungi and a diverse consortium of Bacteria and Archaea. Corals are a model system for the study of symbiosis, the breakdown of which can result in disease and mortality. Little is known, however, about viruses that infect corals and their symbionts. Here we present metagenomic analyses of the viral communities associated with healthy and partially bleached specimens of the Caribbean reef-building coral Diploria strigosa. Surprisingly, herpes-like sequences accounted for 4-8% of the total sequences in each metagenome; this abundance of herpes-like sequences is unprecedented in other marine viral metagenomes. Viruses similar to those that infect algae and plants were also present in the coral viral assemblage. Among the phage identified, cyanophages were abundant in both healthy and bleaching corals and vibriophages were also present. Therefore, coral-associated viruses could potentially infect all components of the holobiont--coral, algal and microbial. Thus, we expect viruses to figure prominently in the preservation and breakdown of coral health.


Subject(s)
Anthozoa/virology , Biodiversity , Genome, Viral , Viruses/genetics , Water Microbiology , Animals , DNA, Viral/genetics , Ecology , Genomic Library , Sequence Alignment , Sequence Analysis, DNA , Symbiosis , Viruses/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...