Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
Braz J Med Biol Res ; 54(4): e10346, 2021.
Article in English | MEDLINE | ID: mdl-33624730

ABSTRACT

The main movements of artistic swimming demand various physical capacities such as flexibility, strength, power, and muscular endurance. The use of ergogenic resources to potentialize performance in this sport, however, is underexplored and deserves investigation. In the present study, we tested whether caffeine ingestion would improve the execution of movements that are essential in a typical figure competition or routines in artistic swimming (i.e., amplitude in the Ariana, height in the Boost and Barracuda, and time maintained in the Stationary Scull techniques). Sixteen experienced female athlete artistic swimmers (17.4±3.2 years of age, 5.6±2.8 years of artistic swimming practice) performed several movements of artistic swimming after having ingested a capsule containing caffeine (5 mg/kg body mass) or cellulose (placebo). Compared to the placebo, caffeine improved latero-lateral amplitude during the Ariana (P=0.035), the height of the Boost and Barracuda (P=0.028 and 0.009), and maintained duration in Stationary Sculling (P=0.012). Bayes factor analysis, however, indicated substantial evidence of a positive effect of caffeine only on the Barracuda and Stationary Scull techniques. These findings indicated that caffeine improved performance during specific artistic swimming movements. Coaches and athletes should consider caffeine ingestion in their supplementation plans.


Subject(s)
Athletic Performance , Caffeine , Bayes Theorem , Caffeine/pharmacology , Child , Child, Preschool , Eating , Female , Humans , Swimming
2.
Braz. j. med. biol. res ; 54(4): e10346, 2021. graf
Article in English | LILACS | ID: biblio-1153535

ABSTRACT

The main movements of artistic swimming demand various physical capacities such as flexibility, strength, power, and muscular endurance. The use of ergogenic resources to potentialize performance in this sport, however, is underexplored and deserves investigation. In the present study, we tested whether caffeine ingestion would improve the execution of movements that are essential in a typical figure competition or routines in artistic swimming (i.e., amplitude in the Ariana, height in the Boost and Barracuda, and time maintained in the Stationary Scull techniques). Sixteen experienced female athlete artistic swimmers (17.4±3.2 years of age, 5.6±2.8 years of artistic swimming practice) performed several movements of artistic swimming after having ingested a capsule containing caffeine (5 mg/kg body mass) or cellulose (placebo). Compared to the placebo, caffeine improved latero-lateral amplitude during the Ariana (P=0.035), the height of the Boost and Barracuda (P=0.028 and 0.009), and maintained duration in Stationary Sculling (P=0.012). Bayes factor analysis, however, indicated substantial evidence of a positive effect of caffeine only on the Barracuda and Stationary Scull techniques. These findings indicated that caffeine improved performance during specific artistic swimming movements. Coaches and athletes should consider caffeine ingestion in their supplementation plans.


Subject(s)
Humans , Female , Child, Preschool , Child , Caffeine/pharmacology , Athletic Performance , Swimming , Bayes Theorem , Eating
3.
Biochem J ; 358(Pt 3): 627-36, 2001 Sep 15.
Article in English | MEDLINE | ID: mdl-11535124

ABSTRACT

In the catalytic cycle of skeletal muscle, myosin alternates between strongly and weakly bound cross-bridges, with the latter contributing little to sustained tension. Here we describe the action of DMSO, an organic solvent that appears to increase the population of weakly bound cross-bridges that accumulate after the binding of ATP, but before P(i) release. DMSO (5-30%, v/v) reversibly inhibits tension and ATP hydrolysis in vertebrate skeletal muscle myofibrils, and decreases the speed of unregulated F-actin in an in vitro motility assay with heavy meromyosin. In solution, controls for enzyme activity and intrinsic tryptophan fluorescence of myosin subfragment 1 (S1) in the presence of different cations indicate that structural changes attributable to DMSO are small and reversible, and do not involve unfolding. Since DMSO depresses S1 and acto-S1 MgATPase activities in the same proportions, without altering acto-S1 affinity, the principal DMSO target apparently lies within the catalytic cycle rather than with actin-myosin binding. Inhibition by DMSO in myofibrils is the same in the presence or the absence of Ca(2+) and regulatory proteins, in contrast with the effects of ethylene glycol, and the Ca(2+) sensitivity of isometric tension is slightly decreased by DMSO. The apparent affinity for P(i) is enhanced markedly by DMSO (and to a lesser extent by ethylene glycol) in skinned fibres, suggesting that DMSO stabilizes cross-bridges that have ADP.P(i) or ATP bound to them.


Subject(s)
Contractile Proteins/metabolism , Dimethyl Sulfoxide/pharmacology , Isometric Contraction/physiology , Muscle, Skeletal/physiology , Myofibrils/physiology , Phosphates/pharmacology , Adenosine Triphosphate/metabolism , Animals , Ca(2+) Mg(2+)-ATPase/metabolism , Calcium/metabolism , Calcium-Transporting ATPases/metabolism , Chickens , Contractile Proteins/drug effects , Edetic Acid/pharmacology , Ethylene Glycol/pharmacology , In Vitro Techniques , Isometric Contraction/drug effects , Kinetics , Magnesium/metabolism , Muscle, Skeletal/drug effects , Myofibrils/drug effects , Myosin Subfragments/metabolism , Myosins/metabolism , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL